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Abstract

We develop a sufficient-statistic approach to designing collaborative human-AI decision-

making policies in classification problems, where AI predictions can be used to either

automate decisions or selectively assist humans. The approach allows for endogenous

and biased beliefs, and effort crowd-out, without imposing a structural model of hu-

man decision-making. We deploy and validate our approach in an online fact-checking

experiment. We find that humans under-respond to AI predictions and reduce effort

when presented with confident AI predictions. AI under-response stems more from

human overconfidence in own-signal precision than from under-confidence in AI. The

optimal policy automates cases where the AI is confident and delegates uncertain cases

to humans while fully disclosing the AI prediction. Although automation is valuable,

the additional benefit from assisting humans with AI predictions is negligible.
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1 Introduction

The performance of Artificial Intelligence tools has improved rapidly in recent years (Maslej

et al., 2024), with many predictive tools matching or surpassing humans (Kleinberg et al.,

2017; Agrawal et al., 2018; Lai et al., 2021). Correspondingly, there has been great interest

in how AI assistance affects human performance (Noy and Zhang, 2023; Brynjolfsson et al.,

2025) and in the design of human-AI collaborative systems that consider which specific cases

or tasks to automate or to assign to humans, either with or without AI assistance (Raghu et

al., 2019; Mozannar and Sontag, 2020; Agarwal et al., 2023).

A challenge in designing human-AI collaboration is that the space of possible collaborative

designs is large, and it can be difficult to predict how humans will respond to different designs.

In particular, humans can exhibit biases in belief updating in response to AI information

(Agarwal et al., 2023), and AI information can crowd out human effort in acquiring or

processing information—phenomena known as algorithmic aversion (Dietvorst et al., 2015),

automation bias (Skitka et al., 1999), or “falling asleep at the wheel” (Dell’Acqua, 2022). The

complexity of these possible responses, together with the high dimensionality of the space of

possible collaborative designs, frustrates the search for an optimal design via experimentation

or structural modeling.

This paper develops a sufficient-statistic approach for designing human-AI collabora-

tion for binary classification tasks, where each of several cases must receive a classification

a ∈ {0, 1}.1 The sufficient statistic, V (x), is the probability that a human decision-maker

correctly classifies a case when she observes a calibrated AI assessment that the probability

that the correct classification is 1 is x ∈ [0, 1].2 We allow any AI system that selectively

automates classification tasks based on its assessment and/or delegates tasks to a human

decision-maker while disclosing a (potentially imperfect) signal of its assessment. Under the

maintained assumption that the function V does not depend on the information disclosure

policy, results from the literature on information design (Dworczak and Martini, 2019) imply

that V can be used to find the optimal design in this space. That is, conditional on V , the

design problem does not depend on any other aspects of the human-AI interaction, such as

humans’ information, behavioral biases, or effort responses.

The sufficient-statistic approach has important advantages over two natural alternatives.

One alternative estimates a fully-specified structural model of human behavior and belief

1We focus on binary classification problems where the objective is maximizing accuracy. However, our
approach extends to multi-class classification problems and alternative objectives.

2In our setting, the sufficient statistic is a function rather than a number as is usually the case in public
finance (Chetty, 2009).
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updating and solves for the optimal design. This approach requires stronger behavioral as-

sumptions, and estimating such a model is likely to require similar data. A second alternative

experimentally tests a range of designs to find the optimal one. However, this approach is

impractical because the space of potential designs is large. Moreover, there is no guarantee

that the highest-performing design tested is globally optimal.

We implement and validate our approach in an incentivized online experiment on fact-

checking, where participants are tasked with checking the veracity of statements. Fact-

checking is an important setting for studying human-AI collaboration because the veracity

of public statements is of great concern (Lazer et al., 2018), and both human and AI fact-

checkers are widely employed. While media outlets, independent fact-checking organizations,

and digital platforms have long relied on professional human fact-checkers (International Fact-

Checking Network, 2023; YouTube, Accessed February 7, 2025; Facebook, Accessed August

12, 2024), the growth in the number of statements to be checked has led to interest in using

laypeople for fact-checking (Allen et al., 2021; X Community Notes, 2025; Kaplan, 2025),

as well as in fully automated fact-checking (Guo et al., 2022; International Fact-Checking

Network, 2023). Understanding how to design AI tools and human-AI collaborative systems

to improve fact-checking is thus an ongoing practical challenge.

Besides being an important setting for human-AI collaboration, fact-checking is also con-

venient for experimental purposes. Fact-checking is easy to explain and can be conducted by

untrained experimental participants. Measuring accuracy in fact-checking is straightforward,

as there are established databases of true and false statements with curated ground-truth

labels, such as the FEVEROUS database (Aly et al., 2021), which we use in our experiment.

Finally, fact-checking is representative of other binary classification tasks, such as medical

diagnosis (Chan et al., 2022; Agarwal et al., 2023), judicial bail decisions (Kleinberg et al.,

2017), and resume screening (Li et al., 2020).

Our experiment proceeds in two stages. The first stage estimates the sufficient statistic

V by measuring classification accuracy under varying AI predictions and solves for optimal

and approximately optimal designs. We consider designs where automation is allowed as

well as designs where humans must make the classification decision, as in many settings—

potentially including fact-checking—there may be a societal preference for humans to make

final decisions.3 In the second stage, we implement five designs derived from the first-stage es-

timates in a within-participant experimental design, and test the sufficient-statistic approach

by comparing the predicted classification accuracy from our first-stage estimates against the

3For example, the algorithmic aversion literature finds that humans often prefer human decisions over
more accurate algorithmic decisions (Dietvorst et al., 2015; Longoni et al., 2019)

2



second-stage experimental results.

The first-stage experimental results yield several insights and predictions. First, the

estimated function V is convex. This property implies that fully disclosing the AI prediction

is optimal for all cases that are delegated to human decision-makers. This finding contrasts

with prior theoretical and empirical results (Athey et al., 2020; Dell’Acqua, 2022) that find

that partial disclosure of AI information can be optimal because disclosing more precise

information crowds out human effort in information acquisition. While we also find effort

crowding-out, this effect is too weak to overturn the direct benefit of providing more precise

AI information.

Second, when the disclosed AI assessment is confident (x is close to 0 or 1), humans’

classification accuracy V (x) is significantly lower than the accuracy under automation, which

equals max{x, 1 − x}. This implies that humans under-respond to the AI assessment when

updating their beliefs, because simply following the AI prediction would increase accuracy

whenever V (x) < max{x, 1− x}.4 It also implies that automating these cases is optimal.

Third, because uncertain AI predictions add little value to humans’ own predictions, we

predict that a policy that automates cases where the AI is confident and delegates cases where

the AI is uncertain to humans without AI assistance is approximately optimal. Thus, while

both humans and AI add value, the value of human-AI collaboration—rather than selective

automation and delegation—is negligible.5

To summarize, the first-stage results predict that the optimal design automates cases

where the AI is confident and delegates the remaining cases to humans while providing them

with the AI assessment. We call this policy Full Disclosure + Automation (FDA). Ac-

curacy under FDA is predicted to be similar to that under No Disclosure + Automation

(NDA), where cases where the AI is confident are automated, and the rest are delegated

to humans without AI assistance. In addition, we predict that the optimal design when

automation is infeasible is Full Disclosure + No Automation (FDNA), where humans

are provided with the AI assessment. This design is predicted to significantly outperform

No Disclosure + No Automation (NDNA), where humans do not receive AI assistance.

Finally, we also predict that accuracy under FDNA is very similar to that under a simpler

Stoplight (SL) policy, where the AI communicates only one of three possible signals (e.g.,

“Likely False,” “Uncertain,” “Likely True,” or “Red,” “Yellow,” “Green”).

The second stage experiment tests whether the sufficient-statistic approach accurately

predicts the performance of these five policies. All predictions are within 1.6 percentage

4Under-response to information is a common finding in behavioral economics (Benjamin, 2019).
5However, our result differs from the finding in Agarwal et al. (2023) that humans assisted with uncertain

AI predictions perform worse than unassisted humans.
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points of experimental estimates, and the differences are not significant at the 1% level.

In addition, the qualitative predictions are all borne out: FDA is the best policy when

automation is feasible but is statistically indistinguishable from NDA; and FDNA is the

best policy when automation is infeasible but is indistinguishable from SL, while NDNA is

significantly worse.6 These results suggest that the sufficient statistic assumption is a good

guide for designing human-AI collaboration in our context.

In addition to designing human-AI collaboration using the sufficient statistic V , we also

analyze the mechanisms that determine the shape of this function (and hence the optimal

designs and their accuracy). In particular, we decompose the impact of behavioral biases

and effort response to AI information.

We first estimate a sharp lower bound for the impact of human under-response to AI on

accuracy. The bound is obtained by estimating the accuracy of an optimal classifier based

on both AI predictions and humans’ reported probability assessments. We find that at least

7.7% of incorrect classifications humans make with AI assistance are attributable to errors

in belief updating. We also find that the optimal FDA policy approximately achieves the

optimal classifier benchmark. This implies that there is little benefit to considering richer

collaborative designs where humans’ probability assessments can be communicated to the

AI.

We next examine whether humans under-respond to AI information because they are

overconfident in the accuracy of their own information or under-confident in the AI. To do

so, we estimate the distribution of our participants’ private information and the update rule

participants use to combine their signals with AI predictions. Our method first identifies the

distribution of participants’ signals s conditional on observed effort (as well as the state and

the AI assessment) using their reports in the NDNA treatment. We then use the observed

effort distribution in the FDNA treatment to calculate the implied signal distribution in

this treatment. Finally, we estimate the update rule p(s, x) to fit the observed reports in

FDNA.7 We find that AI under-response is almost entirely due to overconfidence in own-

signal precision: humans’ beliefs are too sensitive to their own signals relative to a Bayesian

benchmark but are appropriately sensitive to AI predictions. This result contrasts starkly

with prior work that attributes AI under-response to under-confidence in AI signal precision

(Agarwal et al., 2023).

Finally, we find that providing accurate AI information crowds out human effort, but the

6More precisely, estimated accuracy under FDNA is 0.2 percentage points below that under SL.
7The estimated model assumes that our participants use a common update rule and that their signal

distribution depends only on effort, the underlying state, and the AI assessment, and not directly on the
disclosed AI assessment conditional on these variables.
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impact of this effect on the precision of humans’ signals is small.

Related Literature

Comparing predictive AI tools and human decisions is an active area of research (Kleinberg

et al., 2017; Mullainathan and Obermeyer, 2022). Several papers compare the accuracy of

humans with AI assistance to either humans or AI alone (Angelova et al., 2023; Agarwal

et al., 2023; Vaccaro et al., 2024).8 Rather than comparing humans and AI, we develop an

approach to optimally designing human-AI collaborative systems.

Our focus on data-driven design of human-AI collaboration is shared with the “algorithmic

triage” problem in computer science (e.g. Mozannar and Sontag (2020)) and with Raghu et

al. (2019) and Agarwal et al. (2023) in economics. We highlight two key differences. First,

these papers abstract away from endogenous changes in human beliefs or effort in response to

the set of cases that are delegated or automated. However, effort crowding-out has been found

to be an important consideration when humans use AI tools (Athey et al., 2020; Dell’Acqua,

2022), and we argue in Appendix D.1 that endogenous belief responses are similarly important

in our setting. Second, optimal collaboration design using these earlier approaches requires

direct experimentation, because these approaches lack a model for predicting accuracy under

counterfactual AI assessments. In addition, none of these papers tests the performance of

the optimal policy in a second-stage experiment.

Our sufficient-statistic approach for predicting accuracy in counterfactual policies builds

on insights from information design (Kamenica and Gentzkow, 2011). Our sufficient statistic

V (x) is the designer’s indirect utility from inducing a posterior mean assessment x, as in

Dworczak and Martini (2019). Arieli et al. (2023) notes that this “mean-measurable” design

problem arises when the designer discloses information about a signal of an underlying binary

state; we extend this observation to the case where the decision-maker additionally observes

a private signal that is measurable with respect to x and the underlying state. Like us,

De Clippel and Zhang (2022) studies information design with a non-Bayesian receiver. Rather

than estimating the designer’s biased belief-updating function (which is a model primitive

in De Clippel and Zhang (2022)), we estimate the designer’s indirect utility V (x) and apply

standard information design arguments. Finally, a growing experimental literature tests the

assumptions and predictions of information design (e.g., Fréchette et al. (2022)), rather than

using it for optimal design. In addition to these differences, to our knowledge, this paper is

the first to apply information design techniques to human-AI collaboration.

8A strand of this literature considers heterogeneous effects by baseline characteristics (Yu et al., 2024).
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Some of our empirical results parallel findings in prior experiments on biased belief up-

dating. For instance, under-response to new information is a common finding in behavioral

economics (Benjamin, 2019).9 We replicate this finding but also go beyond it by decom-

posing under-response to new information into overconfidence in own-signal precision and

under-confidence in the precision of the new information, finding that in our setting under-

response is driven almost entirely by the first effect. To do so, we offer a novel definition of

over- or under-response to an information source (related to Augenblick et al. (2025)).

A unique feature of our study is the use of a two-stage experiment, where the first stage

estimates a sufficient statistic that is used to design an optimal policy, and the second stage

validates the design. We are aware of only a handful of papers in economics that design an

optimal policy and test it in a second-stage experiment, including Misra and Nair (2011),

Dubé and Misra (2023), and Ostrovsky and Schwarz (2023). Our approach is closest to

Ostrovsky and Schwarz (2023), who use insights from auction theory to derive a sufficient

statistic—the distribution of bidder valuations—that is estimated in a first stage to solve

for the optimal reserve price and test it in a second stage. A qualitative difference from

Ostrovsky and Schwarz (2023) is that the space of reserve prices is one-dimensional while the

space of disclosure policies is infinite-dimensional, so our sufficient-statistic approach avoids

an intractable task of experimenting over a large design space.10 Our approach also avoids

estimating a fully-specified structural model of behavior, a benefit that has been previously

recognized in the context of welfare analysis (Chetty, 2009).

2 Conceptual Framework for Human-AI Collaboration

This section develops our conceptual framework for designing human-AI collaboration to solve

binary classification and prediction problems, such as classifying a statement as true or false.

We take the perspective of a designer who has access to AI predictions and designs a policy

to disclose information about these prediction to a human decision-maker, who then makes

a classification decision. We also consider settings where the designer has the authority to

make the classification directly on the basis of the AI prediction, without involving a human.

9Agarwal et al. (2023) finds under-response to AI among professional radiologists, but in contrast to our
results they find that radiologists are under-confident in AI information and are not overconfident in their
own information. Our approach for estimating these biases also differs in data requirements, discussed below.

10Dubé and Misra (2023) uses experimental data on a subset of policies—prices—to estimate a function
that predicts the outcome of interest—revenue—and tests the optimal policy in a second-stage experiment.
This approach is not tractable in our setting because the set of disclosure policies is high-dimensional. Misra
and Nair (2011) estimates a structural model of dynamic effort allocation to design an optimal dynamic
incentive contract and tests it in a second stage.
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The designer’s objective is to maximize the expected accuracy (the probability of correct

classification) of the overall human-AI collaborative system.

2.1 A Sufficient Statistic

Each case i in a set I must receive a binary classification ai ∈ {0, 1} (e.g., False or True). The

correct classification (ground truth, state) is denoted ωi ∈ {0, 1}, with prior Pr(ω = 1) = ϕ.

An AI tool produces an assessment θi ∈ [0, 1] of the probability that ωi = 1. The assessment

is calibrated: Pr (ωi = 1|θi) = θi. The ground truth ωi is independent across cases, and the AI

assessment θi is independent across cases conditional on ωi. Denote the distribution of each

AI assessment θi by F . This distribution reflects the quality of the AI’s information about

the state. For example, if the AI assessment is always perfectly accurate then θi ∈ {0, 1}
with probability 1, while if the AI assessment contains no information then θi = ϕ (the ex

ante probability that ωi = 1) with probability 1. In general, a better AI (one that provides

more information about ωi in the sense of Blackwell (1953)) corresponds to a more spread-out

distribution F . We suppress the case subscript i for the remainder of the current section.

Given an AI assessment θ, the designer either discloses a signal of the assessment to

a human decision-maker or automates the decision by making the classification on its own.

Signals can potentially take any form, including quantitative statements like, “The AI assess-

ment is θ = 0.7,” as well as qualitative ones like, “The AI assesses that the statement is likely

true.” Formally, the designer chooses an automation/disclosure policy σ : Θ → ∆({0, 1}∪R),

where R is an arbitrary set of signal realizations, and σθ is the probability that a case with AI

assessment θ is either automatically classified as false (σθ(0)), automatically classified as true

(σθ(1)), or delegated to a human-decision maker who receives signal r from the AI (σθ(r)),

for each possible r ∈ R. The designer’s problem is to design an automation/disclosure policy

σ to maximize the probability of correct classification, Pr(a = ω).

The optimal design depends on the probability that a human decision-maker correctly

classifies a case when they receive any possible signal r. In principle, this probability could

depend on a wide range of factors, including the entire posterior distribution µr ∈ ∆([0, 1])

over the AI assessment θ conditional on receiving signal r under automation/disclosure pol-

icy σ, as well as “behavioral” factors such as the language in which signals are expressed.

However, we maintain the following assumption:

Assumption 1 The probability that a human decision-maker correctly classifies a case when

they receive a signal r from the AI depends only on the posterior probability over the state,

Pr(ω = 1|r) = x. We denote the probability of correct classification at posterior x by V (x).
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Under Assumption 1, the optimal automation/disclosure policy depends on human be-

havior only through the function V . The function V is thus the key sufficient statistic that

allows us to solve for the optimal policy. Following the information design literature (e.g.,

Dworczak and Martini (2019)), we refer to V (x) as the designer’s indirect utility from induc-

ing posterior belief x.11 Under Assumption 1, the indirect utility function V is “structural,”

in that it is defined independently of the AI disclosure policy.

Assumption 1 implies that signals matter only through their probabilistic content and

not through the language used to express them. It also implies that there is no benefit to

disclosing a non-degenerate probability distribution over AI assessments µ ∈ ∆([0, 1]) rather

than just the mean assessment Eµ[θ], which equals Pr(ω = 1|θ ∼ µ) by the assumption that

the AI assessment θ is calibrated. For example, the probability of correct classification when

the AI discloses that θ = 0.7 must be the same as the probability of correct classification when

the AI discloses that θ is a 50-50 mixture of 0.5 or 0.9. A signal r can thus be identified with

the induced posterior x = Eµr [θ], and a disclosure policy can be summarized as a distribution

G of induced posteriors x. This observation greatly simplifies the formulation of the optimal

automation/disclosure design problem. In particular, in our experimental design, a signal

from the AI to human participants will take the form of a disclosed mean AI assessment

x = Eµx [θ].

A leading example where Assumption 1 is satisfied is when human decision-makers are

Bayesians with correctly specified beliefs and obtain a private signal s of ω that is independent

of r conditional on x and ω. This holds because, letting h(s|x, ω) denote the probability of

the human decision-maker’s signal s conditional on any (r, ω) where Pr(ω = 1|r) = x, we

have

Pr (ω = 1|s, r)
Pr (ω = 0|s, r)

=
Pr (ω = 1|r)
Pr (ω = 0|r)

Pr (s|r, ω = 1)

Pr (s|r, ω = 0)
=

x

1− x

h (s|x, ω = 1)

h (s|x, ω = 0)
, (1)

where Pr (s|r, ω) = h (s|x, ω) by the hypothesis that the distribution of s is measurable with

respect to x and ω conditional on r and ω.12 Note that this example allows the possibility

that decision-makers exert costly effort in acquiring information about ω, where their effort

choice can depend on posterior x = Pr(ω = 1|r) (but does not depend on r conditional on x)

In contrast, Assumption 1 is typically violated with conditionally dependent private signals.

11Our approach remains valid if the designer’s indirect utility V differs from the probability of correct
classification (e.g., the expected squared loss from a human decision-maker’s probability estimate), so long
as Assumption 1 holds with this V replacing the probability of correct classification.

12In general, for a correctly-specified Bayesian decision-maker, Assumption 1 holds if and only if the private
signal s depends on x linearly conditional on ω, so that the distribution H of s conditional on (x, ω) satisfies
H(s|x, ω) = (1− x)H(s|0, ω) + xH(s|1, ω) for all (s, x, ω).
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For example, if the human signal s and the AI signal θ are perfectly correlated, then human

classification accuracy following a signal that reveals that θ = 0.5 is 0.5 (as then s also equals

0.5), while human classification accuracy following a signal that reveals that θ is a 50-50

mixture of 0 and 1 is 1 (as now s is either 0 or 1), even though these two signals both result

in the same posterior Pr(ω = 1|r) = 0.5.

Assumption 1 is also satisfied if decision-makers make errors in probabilistic reasoning,

but nonetheless their response to signals received from the AI depends only on the posterior

x. For example, this holds if decision-makers combine their own (conditionally independent)

assessment of the state with the posterior AI assessment via a non-Bayesian procedure such

as weighted linear or non-linear averaging. A leading example of such an averaging rule is the

belief-updating model in Grether (1980): a Grether agent updates their belief according to (1)

with heterogeneous exponential weights on the ratios x/(1−x) and h(s|x, ω = 1)/h(s|x, ω =

0), so the resulting posterior belief again depends on r only through x.

Our empirical results will show that the predicted accuracy of policies designed based

on Assumption 1 closely matches their realized accuracy, even though we will find that our

experimental participants are not correctly-specified Bayesian and their information is not

conditionally independent of the AI assessment. This agreement between predicted and

realized accuracy based on Assumption 1 is a practical validation of the sufficient-statistic

approach.

2.2 The Designer’s Problem

We now show how the optimal automation/disclosure policy can be determined as a function

of the indirect utility function V (x). Under Assumption 1, an information disclosure policy

can be summarized by the distribution G of induced posteriors x. A key result from the

information design literature (Blackwell, 1953; Gentzkow and Kamenica, 2016; Kolotilin,

2018) implies that such a distribution G is attained by some disclosure policy if and only if

it is a mean-preserving contraction of the distribution F of AI assessments θ. Therefore, the

maximum expected accuracy attainable by information disclosure alone (when the designer

is not permitted to automate the classification decision) is

max
G∈MPC(F )

∫ 1

0

V (x) dG (x) , (2)

where MPC (F ) denotes the set of all distributions that are mean-preserving contractions

of the distribution F of AI assessments. For example, under the full disclosure policy, where

the AI always discloses its assessment, expected accuracy is given by
∫ 1

0
V (x) dF (x); while
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under the no disclosure policy, where the AI reveals no information, expected accuracy is

given by
(∫ 1

0
xdF (x)

)
= V (ϕ).

Next, to analyze the case where selective automation as a function of x is allowed, define

W (x) = max {V (x) , 1− x, x}. This is the maximum accuracy that an AI with assessment x

can attain by either disclosing this assessment to a human (V (x)), classifying the statement

as false without human input (1 − x), or classifying the statement as true without human

input (x). When selective automation is feasible, the maximum expected accuracy attainable

by the designer is

max
G∈MPC(F )

∫ 1

0

W (x) dG (x) . (3)

The optimal policy is then given by (i) garbling the AI assessment so that the distribution of

posteriors x is given by the solution G, (ii) disclosing x if V (x) ≥ max {1− x, x}, and (iii)

automating the decision and classifying the statement as false (resp., true) without human

input if x < min {1− V (x) , 0.5} (resp., x > max {V (x) , 0.5}).
If the human decision-maker is Bayesian with correct beliefs about the joint distribution

of s, x, and ω, then V (x) ≥ max {1− x, x}, because max {1− x, x} is the accuracy of

a Bayesian decision-maker with no information beyond the AI assessment x. Thus, with

a rational decision-maker, W (x) = V (x), and the designer never automates a decision.

However, if the human decision-maker is irrational or under-responds to information provided

by the AI (consistent with evidence from prior experiments (Benjamin, 2019) and studies on

human-AI interaction (Agarwal et al., 2023)), then we may have V (x) < max {1− x, x} and

hence W (x) > V (x) for some values of x, so selective automation may be optimal.

The parameters of the framework are thus the distribution of calibrated AI assessments

F and the function V (x) describing human decision accuracy as a function of the disclosed

posterior x. In our experiment, the distribution of assessments F is given and known. The

experiment estimates the function V (x). Given this function, we can calculate the optimal

automation/disclosure policy and the optimal disclosure-only policy as described above.

We will also solve for the optimal no collaboration policy, where the AI and the human

decision-maker do not communicate. This is the optimal policy with automation but no

disclosure: that is, the optimal policy among those that selectively automate cases but do

not provide any information about those cases delegated to the human decision-maker. We

formulate this problem as choosing a set of assessments Θaut ⊂ [0, 1], where cases with AI

assessments θ ∈ Θaut are automated and cases with AI assessments θ /∈ Θaut are delegated

to the human-decision maker, who is informed only of the posterior among delegated cases,
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E [θ |θ /∈ Θaut ]. The set Θaut is chosen to solve

max
Θaut⊂[0,1]

E
[
max{θ, 1− θ}

∣∣θ ∈ Θaut
]
Pr(θ ∈ Θaut) + V

(
E
[
θ
∣∣θ /∈ Θaut

])
Pr(θ /∈ Θaut).13 (4)

This sufficient-statistic approach differs in two ways from the existing literature, which

studies policies that selectively automate cases as a function of the AI assessment (Raghu et

al., 2019; Mozannar and Sontag, 2020; Agarwal et al., 2023). First, our approach accounts for

how human decision-makers’ beliefs respond to the designer’s automation/disclosure policy.

For instance, in equation (4), human accuracy on delegated cases equals V (E [θ |θ /∈ Θaut ]),

which depends on the set of automated cases Θaut. Appendix D.1 discusses how this response

was neglected in previous work and quantifies the implications of taking it into account. Sec-

ond, unlike previous approaches, we use do not need to collect data under multiple disclosure

policies to find the optimal policy. Instead, the estimated function V based on data under full

disclosure and the distribution F are used predict accuracy for any counterfactual disclosure

or automation policy.

2.3 Discussion of the Optimal Design

We now describe how the shape of the function V determines the optimal automation/disclosure

policy and preview our empirical results on the shape of V .

First, full disclosure without automation is optimal if and only if V is convex and V (x) ≥
max {1− x, x} for all x. For example, these conditions hold if the human decision-maker is

Bayesian and the distribution of her private signal s is independent of θ conditional on ω.14

Second, if V is convex but V (x) < max {1− x, x} for some x, then a mix of full

disclosure and automation is optimal: the designer should disclose assessments θ where

V (θ) ≥ max {1− θ, θ} and should automate the decision if V (θ) < max {1− θ, θ}. For

example, this case can arise if human decision-makers observe conditionally independent pri-

vate signals but under-respond to AI-provided information. Figure 1a and 1b illustrate some

functions V where full disclosure without automation and with automation are optimal.

To preview, our empirical results will indicate that in our setting V is (approximately)

convex, so fully disclosing the AI assessment is optimal. We also find that there are values

13This formulation assumes that the designer does not randomize cases with any assessment θ between
automation and delegation to humans. In our setting, the gains from such randomization are trivial.

14Intuitively, V is convex because a Bayesian cannot do better by ignoring any AI information, and V (x) ≥
max {1− x, x} for all x because a Bayesian cannot do better by ignoring her own information. Conversely,
any convex function V satisfying V (x) ≥ max {1− x, x} for all x is the probability of correct classification
for some conditionally independent distribution for s (Kolotilin et al., 2017).
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Figure 1: Indirect Utilities where Full Disclosure with and without Automation is Optimal

(a) Full Disclosure with No Automation (b) Full Disclosure with Automation

Note: In Panel (a), full disclosure with no automation is optimal because V is convex and V (x) ≥ max {1− x, x} for all x.
In Panel (b), full disclosure is optimal for AI assessments x where V (x) ≥ max {1− x, x}, and automation is optimal for AI
assessments x where V (x) < max {1− x, x}. The function V we estimate is qualitatively similar to the one in Panel (b).

of x where V (x) < max {1− x, x}, so automation is valuable. Qualitatively, the function V

that we estimate has a similar shape as the function V in Figure 1b.

More generally, other disclosure policies can be optimal. In particular, the function V

may be non-convex if human effort is sufficiently sensitive to x or if humans exhibit more

complex behavioral biases. Figures 2a and 2b illustrate such functions V . If V is non-convex

then full disclosure is suboptimal, so optimal information disclosure takes a more complex

form. For example, Kolotilin (2018) characterizes when it is optimal to pool extreme states

and disclose intermediate states, or vice versa.15 Empirically, Dell’Acqua (2022) finds a

setting where human effort is sufficiently sensitive to the disclosed AI signal that overall

accuracy is higher with a less precise AI signal, which would imply that V is non-convex

under Assumption 1, and Agarwal et al. (2023) likewise finds that withholding the AI signal

improves accuracy for some cases.

Finally, while we focus on binary classification problems, a similar approach applies for

multi-class classification. In the general multi-class case with n possible classifications, the

state ω lies in an arbitrary finite set Ω with n element, and the designer’s problem becomes

a general Bayesian persuasion problem as formulated in Kamenica and Gentzkow (2011).16

15In these settings, it can be optimal for the designer to delegate some cases with assessments θ where
V (θ) < max {1− θ, θ} to a human—even though the AI’s accuracy on these cases would be higher if it auto-
mated them—because pooling these cases with other cases where V (θ) > max {1− θ, θ} increases accuracy
on the latter cases, which more than compensates for the reduced accuracy on the former cases.

16Here, the designer’s indirect utility function is a function V : ∆(Ω) → R defined on the n−1-dimensional
simplex (e.g., the probability of correct classification when AI assessment µ ∈ ∆(Ω) is disclosed to the decision-
maker), and the designer’s problem is to maximize

∫
µ∈∆(Ω)

V (µ)dτ(µ) over disclosure policies τ ∈ ∆(∆(Ω)),

12



Figure 2: Indirect Utilities where Partial Disclosure is Optimal

(a) Conceal Extreme Assessments (b) Conceal Moderate Assessments

Note: In Panel (a), it is optimal to disclose moderate assessments and separately pool extreme low and high assessments. This
pattern can arise if AI under-response is more extreme at extreme AI assessments. In Panel (b), it is optimal to disclose extreme
assessments and pool moderate assessments. This pattern can arise if AI information strongly crowds out human effort.

The main difference is that the indirect utility function to be estimated and the set of possible

disclosure policies to be optimized over are both lower-dimensional in the binary case.

3 Experimental Design

We design a two-stage experiment to implement and validate the sufficient-statistic approach

in the context of human-AI collaboration in fact-checking. Stage 1 estimates the function

V (x)—the probability of correct classification as a function of the disclosed mean AI assess-

ment x ∈ [0, 1]. Stage 2 then tests the automation/disclosure policies that we find to be

optimal under the V (x) function estimated in Stage 1, as well as some benchmark policies.

The two stages are nearly identical except for the AI assistance provided to participants.

In Stage 1, the AI assessment θ is always disclosed to participants: in other words, the

automation/disclosure policy is Full Disclosure + No Automation. In Stage 2, we test the five

automation/disclosure policies mentioned in the introduction: Full Disclosure + Automation

(the predicted optimal policy with automation), No Disclosure + Automation, Full Disclosure

+ No Automation (the predicted optimal policy without automation), No Disclosure + No

Automation, and Stoplight.

We pre-registered this design and updated the plan to describe the specific policies tested

subject to the Bayes plausibility constraint
∫
µ∈∆(Ω)

µdτ(µ) = ϕ, where ϕ ∈ ∆(∆(Ω)) is the population

distribution of the AI assessment µ ∈ ∆(Ω).
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in Stage 2 as a result of the Stage 1 estimates.17 The experiment was implemented on Prolific

(www.prolific.com) using an interface designed on the o-tree framework (Chen et al., 2016)

that can be accessed through a browser. We next describe the interface and the data that

we collected during the experiment.

3.1 The Task

In our experiment, participants assess the probability that statements are True or False.

For each statement, the participant encounters a screen that includes the statement, an

AI assessment of the probability that the statement is True, a link to a Google search for

the subject of the statement, and a slider where the participant enters their assessment.

Figure 3 presents a screenshot of the experimental interface. For each statement, we record

the participant’s assessment p ∈ [0, 1] and a binary classification a ∈ {0, 1}, where a =

1 [p > 0.5].18

After entering their assessment, participants self-report if they used an external source,

including the Google link (Figure 3b). Participants then encounter a feedback screen that

includes the AI assessment, the participant’s assessment and classification, and the ground

truth state, True or False (Figure 3c).

In addition to assessments and classifications, we also collect three measures of effort: the

time taken on each statement, whether the participant clicked the Google search link, and

the participant’s self-report of whether they used an external source.

In Stage 1, each participant assesses 30 random statements from our statement database

(described in Section 3.3). In Stage 2, each participant assess 40 random statements: eight

different statements under each of five different automation/disclosure policies. To economize

on statistical power, our design includes within-participant comparisons. The order of the

policies is randomized to ensure that our estimated treatment effects are not confounded

with learning or fatigue and to preserve a robustness check using a pure across-participant

comparison based on the first treatment.

17The pre-registration can be found at https://doi.org/10.1257/rct.13990-1.1. We also pre-registered that
we would update the plan after Stage 1 with the Stage 2 policies we test. The updated pre-registration
changed the structure of the second stage to test 5 policies rather than the 4 we initially intended to test.
We also reduced the number of statements per policy to 8 rather than 10 to maintain the overall duration of
the experiment for each participant. Unless otherwise noted, all analyses we present are pre-registered.

18Participants enter their probability assessment through the slider in Figure 3a. The slider button and
the text below the slider (“Likelihood true: p%” and “Your classification: a”) appear after the participant
clicks on the slider to avoid priming.
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Figure 3: Screenshots of Experimental Interface

(a) Assessment Screen

(b) Self Reported Effort Screen

(c) Feedback Screen
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3.2 Participant Recruitment, Training, and Incentives

We recruit participants from the Prolific platform. We use Prolific’s filters to ensure that each

person participates at most once and no one participates in both the first and second stages

of the experiment. We recruit a sample representative of the United States adult population

on the dimensions of sex, age, and ethnicity.19 A summary of demographic information of

the study participants is presented in Appendix Table A.2. We saw minimal attrition, with

97.7% of participants who grant consent and began the study completing Stage 1 and 95.8%

completing Stage 2.

At the beginning of the experiment, participants receive an overview of the task and

the compensation rule. They are then provided with additional information about the task,

the interface, and the prior distribution of true and false statements in the database. We

next introduce the AI fact checker, explaining that it provides a calibrated assessment of the

likelihood that a statement is true. In Stage 2, we explain that participants will encounter

multiple AI fact-checkers (see Appendix F.4). Next, we explain the compensation rule in

broad terms and highlight that the expected payment increases with the accuracy of the

assessment. We also provide a button that opens a window that provides full details of the

compensation rule. We then test the participant’s understanding of the task and the AI fact-

checker through a series of comprehension questions. These questions test if participants

understand that the AI is calibrated, that they can use outside resources, and that they

understand the compensation rule. Finally, before beginning the experiment, each participant

assesses five practice statements to ensure familiarity with the experimental interface. The

full experimental instructions are presented in Appendix F.

Participants are incentivized in two ways to exert effort and provide accurate assessments.

The first is a bonus of 35 cents for each correctly classified statement. The second is a lottery

for an additional $20, where the probability of winning the lottery depends on the accuracy

of the participant’s probability assessments following Hossain and Okui (2013).

3.3 The Statements

We use the set of statements collected and labeled in the FEVEROUS database (Aly et al.,

2021). The data contain approximately 80,000 statements that are constructed by asking

annotators to generate statements from a snippet of highlighted Wikipedia text or tables.

A separate set of annotators are asked to label each statement as either Supported (True),

19Certain segments are under-represented on Prolific, including older adults. We maintained the represen-
tative target until 95% of slots were filled. We filled the remaining slots in both stages with non-representative
participants.
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Refuted (False), or Not Enough Information (NEI).20

Aly et al. (2021) describes the extensive quality controls taken to ensure high-quality

statements and labels (Aly et al., 2021). In addition, we remove statements that are not

suitable for our study. We first remove the approximately 3% of statements with an NEI

label. We also remove statments with any spelling or grammatical errors flagged by either

the rules-based LanguageTool API or GPT-4o.21 Finally, we remove statements that we

determine to be of poor quality, which are mostly statements where the ground truth can

change over time, such as statements that reference an individual’s age. In the final database

of statements from which we sample, 65.4% of statements are True.22

3.4 The AI Fact-Checker

We use OpenAI’s GPT-4o as our AI fact-checker because it generated more accurate as-

sessments than other alternatives, including the fact-checker in Aly et al. (2021). For each

statement, we queried the OpenAI API with the prompt, “True or False: [statement]” and

store the top 20 most likely next tokens along with the probability of each token. We calculate

a raw score θri for each statement i as

θri =

∑
j pij1 [tokenij = true]∑

j pij1 [tokenij ∈ {true, false}]
,

where tokenij is the jth most likely next token, and pij is the probability GPT-4o assigns to

the jth token.23 We then calibrate θri by binning it into 200 bins and calculating the share of

statements in each bin that are true to yield the calibrated AI assessment θi. Figure 4 shows

the distribution of θi.

20Supported statements require all information within the statement to be verified and supported by
evidence. Refuted statements require only a single piece of information within the statement to be refuted
by evidence. Statements where not enough information is available on Wikipedia to label the statement as
either True or False are labeled Not Enough Information.

21We queried GPT-4o with the prompt “True or False. The following statement has no grammatical or
spelling errors:” followed by each statement. We discarded statements that GPT-4o assessed to be more
likely than not to contain a spelling or grammatical error.

22Our independent review of 50 randomly drawn statements, half of which are true, found three cases in
which our assessed label differed from the label in FEVEROUS and three cases where there was not enough
information or ambiguous wording.

23GPT-4o is highly likely to suggest tokens in the set {true, false}. In our sample,∑
j pj1 [tokenj ∈ {true, false}] is greater than 0.9 for 99.5% of statements and greater than 0.99 for 94.7% of

statements.
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Figure 4: Distribution of Calibrated AI Assessments
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Note: Histogram of calibrated AI assessments (from GPT-4o) for the final population of statements in our database.

4 Stage 1 Results

In Stage 1, we estimate the function V introduced in Section 2.1 and calculate optimal and

approximately optimal information disclosure policies with and without automation. We also

calculate the predicted treatment effect of each policy and document how our effort measures

respond to the AI assessment θ (which equals x under full disclosure).

4.1 Overall Accuracy and Effort

Table 1 describes participants’ accuracy and effort. Participants correctly classified 73.5%

of statements. This overall accuracy is similar to the accuracy of 73.3% that would result

if participants simply repeated the AI assessment. (Recall that the AI assessment is fully

disclosed to participants in Stage 1.) However, this similarity masks large heterogeneity

in accuracy by AI assessment x—that is, large variation in V (x) over x—which is key for

determining the optimal automation/disclosure policy. We discuss the shape of V in the next

subsection.

Participants classified 69.6% of cases as True. This exceeds the share of true cases in the

database, 65.4%, which was conveyed to participants. The mean participant assessment of

63.0% is closer to the share of true cases.
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Participants appear to exert considerable effort: they reported using external information

sources in 63.7% of cases; clicked the provided Google search link in 36.0% of cases; and took

an average of 46.8 seconds fact-checking each statement.24

Table 1: Stage 1 Summary Statistics

Stage 1
Mean SD

(1) (2)

Correct Classification 0.735 0.441

Classified as True 0.696 0.460

Assessment 0.630 0.329

Used External Sources 0.637 0.481

Clicked Google Link 0.360 0.480

Time Taken (s) 46.791 43.959

Observations 45030

Participants 1501

Cases per Participant 30

Note: Summary statistics of the Stage 1 data. Correct Classification is an indicator for whether the classification matches the
ground truth. Classified as True is an indicator for whether the probability reported exceeds 0.5. Assessment is the reported
probability true. Used External Sources is an indicator for whether the participant self-reported using external sources. Clicked
Google Link is an indicator for whether the participant clicked the provided Google link. Time taken (s) for a statement is
measured in seconds and winsorized at the 5th and 95th percentiles.

4.2 Accuracy and Effort by AI Assessment x

Figure 5 presents our estimate of the sufficient statistic V , obtained using a local linear

regression. The estimated function V̂ has a qualitatively similar shape as the function V

in Figure 1b. There are two important features. First, V̂ is approximately convex, and a

statistical test does not reject that V is convex (p =0.5).25 Recall that if V is convex then

24The median participant in Stage 1 took 44 minutes to finish the experiment, including training, compre-
hension questions, and the 5 practice statements.

25We tested convexity by comparing the objective function from estimating V (x) with and without the
convexity constraint. Specifically, we estimated V (x) using local linear regression subject to a global convexity
constraint via a quadratic programming problem: ming,β

∑
i(yi−g−β(xi− t))2Kh(xi− t) subject to (gj+1−

2gj+gj−1)/(tj+1−tj)
2 ≥ 0 for all j, whereKh(·) is a Gaussian kernel with bandwidth h. The test statistic (the

value of the objective function) is compared to a null distribution generated using a bootstrap distribution of
the objective function without the convexity constraint. The null distribution and test statistic are plotted
in Figure B.4.
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Figure 5: First Stage Estimate of V
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Note: V is estimated using local linear regression from Stage 1 data. The bandwidth is chosen via leave-one-out cross validation to
minimize mean squared error. The 95% uniform confidence band displayed is computed via bootstrap accounting for clustering at
the participant and case level (Montiel Olea and Plagborg-Møller, 2019). The dashed lines indicate the accuracy of max{x, 1−x}
that would result under automation.

full disclosure of the AI assessment is optimal for all non-automated cases.

We thus obtain a key implication for optimal design: in any optimal automation/disclosure

policy, the AI assessment of any non-automated case should be fully disclosed to the human

decision-maker.26

Second, on cases where the AI is confident, participants with AI assistance perform sig-

nificantly worse than they would if they just followed the AI. Figure 5 shows that V (x) <

max{x, 1−x} whenever x < 0.33 or x > 0.69. Automation would improve accuracy on these

cases. At the same time, participants significantly outperform the AI on cases where the AI

is uncertain: for example, V (0.5) = 0.62 , which substantially exceeds the accuracy of 0.5

that would result from automating these cases.

The fact that participants would do better by just following the AI for some range of AI

assessments implies a degree of under-response to the AI. This finding echoes under-response

to information in experiments on belief updating (Benjamin, 2019) and automation neglect

in experiments involving predictive AI assistance (e.g. Agarwal et al., 2023).

26Appendix A.2 contains an estimate of V when the designer’s objective is to minimize the deviation of the
probability assessment from the ground truth (i.e., V (x) = E [ |pij − ωi| | x]). We also find V to be convex
for this alternative objective.
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Figure 6: Calibration Curve of Human Assessments
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Note: Calibration curve in Stage 1. Local-linear regression of ωi on reported assessments using a Gaussian kernel. Bandwidth is
selected to minimize cross-validated mean squared error. The 95% uniform confidence band displayed is computed via bootstrap
accounting for clustering at the participant and case level.

While Figure 5 shows that participants under-respond to the AI, it does not indicate

whether this occurs because participants under-weight the AI’s information—consistent with

automation neglect as found in Agarwal et al. (2023)—or because participants over-weight

their own information—consistent with the version of overconfidence known as over-precision

in the behavioral economics literature (Moore and Healy, 2008). In particular, the function

V in Figure 5 can be generated by either a quasi-Bayesian with correct beliefs about the

precision of their own signal but erroneously low beliefs about the precision of the AI signal,

or a quasi-Bayesian with correct beliefs about the precision of the AI signal but erroneously

high beliefs about the precision of their own signal.

Examining the participants’ reported assessments suggests overconfidence. Figure 6 plots

the calibration curve (true probability against reported probability) for Stage 1 participants.

The slope of the calibration curve is less than 1, indicating overconfidence. For example,

29% of statements that participants report are definitely false (reported p = 0) are actually

True, and 16% of statements that participants report are definitely True (reported p = 1)

are actually False. While Figure 6 suggests overconfidence, it does not speak to automation

neglect, and it does not quantify the extent of overconfidence. We address these questions

using a structured model of belief updating in Section 6.
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We also find evidence of effort crowd-out as the AI assessment x moves away from 0.5, the

point of maximum uncertainty. Figure 7 shows the effect on time taken is 10-15 percentage

points lower when x = 1 as compared to x = 0.5. This effect is similar for our other measures

(see Figures A.1a and A.1b). This reduction in effort for confident AI assessments is another

reason why automation outperforms human-AI collaboration. In Section 6.4, we estimate

the effect of disclosing the AI assessment on the precision of participants’ private signals via

the induced reduction in participant information-acquisition effort.

Figure 7: Effort Response – Time Taken by AI Assessment
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Note: Log time taken (in seconds) to assess a statement by x in Stage 1, estimated via local linear regression. The 95% uniform
confidence bands are computed via bootstrap accounting for clustering at the participant and case level.

4.3 Optimal and Simple Policies

We now use the estimate of V from Figure 5 to solve for the optimal policies, both when

automation is feasible and when it is infeasible: that is, we solve the problems (2) and (3) for

the estimated function V . Since the estimated function V is convex, optimal policies fully

disclose the AI assessment of any non-automated case to the human decision-maker.

We compare these optimal policies with the optimal no-collaboration policies where the

AI discloses no information to the human decision-maker: that is, the No Disclosure + No

Automation policy and the No Disclosure + Full Automation policy that solves problem (4).

Finally, we also consider the Stoplight policy where the AI can only disclose one of three
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signals. In total, we consider the four policies illustrated in Figure 8, as well as Full Disclosure

+ No Automation (the optimal policy without automation), which we also ran in Stage 1.

The first two policies allow automation. Here we compare the optimal policy (Full Disclo-

sure + Automation) and the optimal no-collaboration policy (No Disclosure + Automation).

(a) Full Disclosure + Automation (FDA): The optimal policy (i.e., the solution to

(3)) discloses θ if V (θ) > max{θ, 1 − θ}—which we find holds if θ ∈ [0.33, 0.69]—and

automates the case otherwise. The predicted accuracy of this policy is 75.1%.

(b) No Disclosure + Automation (NDA): The optimal no-collaboration policy solves

problem (4). We find that the optimal set of cases to automate is Θaut = [0, 0.39] ∪
[0.68, 1]. The mean AI assessment conditional on θ /∈ Θaut is 0.57. The predicted

accuracy under this policy is 74.8%. Since this is only 0.3 percentage points lower than

the optimal policy of FDA, the predicted value of direct human-AI collaboration is very

small.

The intuition for why predicted accuracy under FDA or NDA is almost identical is that

the estimated function V is relatively flat on the intervals of non-automated cases, [0.33, 0.69]

(for FDA) or [0.39, 0.68] (for NDA). Since the benefit of disclosing information comes from

the convexity of V , this implies that the benefit of disclosing AI assessments on the interval

of non-automated cases is small.

We highlight that it is optimal to automate cases with a wider range of AI assessments

under NDA than under FDA. The key reason is that a marginal case θ at the boundary of

the automation region under full disclosure is correctly classified with probability V (θ) =

max{θ, 1 − θ}, while if this case were delegated to a human under no-disclosure it would

be correctly classified with probability only V (E[θ|θ /∈ Θaut]), which is less than V (θ) for

a marginal case θ. So, automating such cases is strictly better under no disclosure. In

addition, the decision to automate or delegate marginal cases affects E[θ|θ /∈ Θaut]. Since

V (x) is positively sloped at x = E[θ|θ /∈ Θaut], this effect favors automating more marginal

low-θ cases and fewer marginal high-θ cases under no disclosure, which explains why the

lower threshold of the automation region increases substantially—from 0.33 to 0.39—as we

move from FDA to NDA, while the upper threshold of the automation region only slightly

decreases from 0.69 to 0.68.

The remaining policies consider the case where automation is infeasible. Here we consider

the optimal policy (Full Disclosure + No Automation), the no-collaboration policy (No Dis-

closure + No Automation), and a simple policy that approximates the optimum (Stoplight).
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Figure 8: Stage 2 Experiment Overview
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(c) No Disclosure + No Automation
(NDNA)
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(d) Stoplight + No Automation
(SL)
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Note: Figures summarize the set of policies considered in the experiment. The function V is estimated using local linear
regression from Stage 1 data. The bandwidth is chosen via leave-one-out cross validation such that the mean squared error is
minimized. The 95% uniform confidence band displayed is computed via bootstrap accounting for clustering at the participant
and case level. The dashed lines indicate the accuracy under automation of max{θ, 1 − θ}. The dotted lines indicate the
assessments disclosed to participants and the associated accuracy predicted by V .
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(c) Full Disclosure + No Automation (FDNA): This is the optimal policy without

automation (i.e., the solution to (2)), which is the policy used in Stage 1. The predicted

accuracy of this policy equals the average accuracy in Stage 1, 73.5%.

(d) No Disclosure + No Automation (NDNA): With no disclosure or automation,

participants are only informed of the share of True cases in the database, which is

65.4%. The predicted accuracy of this policy is 67.3%.

(e) Stoplight (SL): The final policy we consider illustrates the feasibility of approximat-

ing full disclosure using a very simple signal distribution. Specifically, we calculate

the optimal partition of AI assessments into K intervals and disclose the average AI

assessment within each interval. The resulting accuracy is

max
{θk}Kk=0: θ0=0,θK=1

K∑
k=1

Pr (θ ∈ [θk−1, θk))V (E [θ |θ ∈ [θk−1, θk) ]) .

Note that K = 1 gives NDNA, while K = ∞ gives FDNA.

We consider “Stoplight” with K = 3 for two reasons. First, predicted accuracy with

K = 3 is 73.2%, which we expect to be indistinguishable from the predicted accu-

racy of 73.5% when K = ∞.27 Intuitively, since the estimated function V (θ) is well-

approximated by a piecewise linear function with three “pieces,” disclosing only which

piece contains the AI assessment θ is an approximately optimal policy. Second, Stop-

light can be interpreted as a system in which the AI reports only that each case is either

“Likely False,” “Uncertain,” or “Likely True” (or “Red,” “Yellow,” or “Green”), which

resembles some collaborative systems used in practice.28 The optimal Stoplight pol-

icy partitions the AI assessment into the intervals [0, 0.40), [0.40, 0.68) and [0.68, 1.00],

with mean assessments 0.24, 0.57, and 0.81, respectively.29

We emphasize five qualitative predictions for the design of human-AI collaboration:

1. Automation is valuable. Predicted accuracy under the optimal policy with automa-

tion (75.1% under FDA) significantly exceeds that under the optimal policy without

automation (73.5% under FDNA).

27Predicted accuracy for other values of K are shown in Figure B.5.
28For example, several pre-trial risk assessment tools report risk levels in coarse bins, including the Pre-

Trial Risk Assessment (Lowenkamp, 2009) and the Public Safety Assessment’s Release Conditions Matrix
(Policy and Research, 2020)

29It is a coincidence that the middle interval under Stoplight coincides with Θaut under No Disclosure +
Automation.
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2. Human information is valuable. Predicted accuracy under the optimal policy with

automation (75.1%) significantly exceeds that achievable with AI alone (73.3%).

3. Human-AI collaboration does not outperform selective automation. Pre-

dicted accuracy under the optimal policy with automation (75.1%) does not signifi-

cantly exceed that under the optimal no-collaboration policy (74.8% under NDA).

4. AI assistance is valuable when automation is infeasible. Predicted accuracy

under the optimal policy without automation (73.5%) significantly exceeds that without

AI assistance (67.3% under NDNA).

5. Simple disclosure polices are approximately optimal. The predicted accuracy

under the optimal policy without automation (73.5%) does not significantly exceed that

under SL (73.2%).

In addition, from the perspective of validating Assumption 1, it is worth highlighting that

the quantitative predictions from the above policies are all out-of-sample (except for FDNA).

In particular, the no-disclosure and Stoplight policies provide counterfactual AI assessments

to our participants. The accuracy predictions under these policies are thus particularly

demanding tests of our framework.

4.4 Restrictions on the Design Space

Three restrictions on our design space merit discussion. First, while we let the AI flexibly dis-

close information to human decision-makers, we do not consider systems that elicit humans’

assessments and combine them with the AI’s information. That is, we consider “one-way”

communication from AI to humans, not “two-way” communication. However, in Section 5.2,

we consider the maximum accuracy attainable with access to both human and AI assessments

under FDNA, and show that this accuracy is indistinguishable from that under FDA (the

optimal policy without elicitation). Thus, in our setting, one-way communication turns out

to be without loss of optimality.

Second, we restrict to disclosure policies where the AI assessment is calibrated. Appendix

D.2 analyzes policies where the designer can exaggerate the AI assessment to offset the under-

response to AI information documented above. However, the benefit of exaggeration will wear

off over time if humans learn that AI assessments are not calibrated.

Third, we do not tailor the policy to predictable heterogeneity across participants. Figure

C.9 shows that accuracy and the sufficient statistic V are predictable as functions of baseline

comprehension questions, effort, or accuracy on initial statements. However, Table C.12
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shows that policies that are tailored to this heterogeneity yield predicted accuracy similar to

that of the pooled policies we consider.30

5 Stage 2 Results

In Stage 2, we test each of the above policies—FDA, NDA, FDNA, NDNA, and SL. Our

goals are (i) to compare their accuracy to the predictions based on Stage 1 data described

in Section 4.3, (ii) to compare them to a benchmark of the potential gains from optimally

combining human and AI signals, and (iii) to document the effects of these policies on effort.

We estimate the average outcome for each policy k ∈ {FDNA,FDA,NDA,NDNA, SL} in

Stage 2 using the regression:

yij =
∑

k∈{FDNA,FDA,NDA,NDNA,SL}

1[ policy (i, j) = k]γj + εij, (5)

where yij is an outcome for statement i by participant j, βk is the average outcome under

policy k. We cluster standard errors to allow for Cov(εij, εi′j′) ̸= 0 if either i′ = i or j′ = j,

but set it to zero otherwise.31 Estimated treatment effects relative to FDNA are therefore

given by βk − βk0 , where k0 is the baseline FDNA policy.

5.1 Validity of the Sufficient-Statistic Approach

Table 2 presents the estimated accuracy under each of the five automation/disclosure policies

tested in Stage 2 (column 1) and compares them to the predictions based on the function V

estimated using either FDNA in Stage 2 (column 2) or FDNA in Stage 1 (column 4). The

p-values for a test of the differences between the experimental estimates and each of the two

predictions are shown in columns 3 and 5.

The experiment confirms all of our qualitative predictions:

1. Automation is valuable. Accuracy under FDA significantly exceeds that under

FDNA. The estimated difference is 2.7 percentage points (p < 0.001). The predicted

30The envelope theorem provides a rationale for this result. Since the pooled policies are optimized to the
full population of participants, the impact of re-optimizing the policy to fit changes in the sufficient statistic
is second-order.

31For treatment arms involving automation, participants only assess cases that are not automated. The
dependent variables of interest are system accuracy and effort. For automated arms, we use the modified
outcomes yij Pr

(
θ /∈ ΘAut

)
+ȳPr

(
θ ∈ ΘAut

)
, where ΘAut is the set of automated AI assessments under a given

policy, and ȳ is the average outcome among automated cases. For accuracy, ȳ = E
[
max{θ, 1− θ}|θ ∈ ΘAut

]
;

for effort measures, ȳ = 0.
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difference is 2.5 percentage points using Stage 2 estimates of V and 1.6 percentage

points using Stage 1 estimates.

2. Human information is valuable. Accuracy under FDA significantly exceeds that

achievable with AI alone (p < 0.001). The estimated difference is 1.6%, whereas the

predictions are 1.5% and 1.8% using Stage 2 and Stage 1 estimates respectively.

3. Human-AI collaboration does not outperform selective automation. Accu-

racy under FDA does not significantly exceed that under NDA (p = 0.44). Human-AI

collaboration increases accuracy by 0.2%, and our predictions using either estimate of

V is within 0.2 percentage points of this estimate.

4. AI assistance is valuable when automation is infeasible. Accuracy under FDNA

significantly exceeds that under NDNA (p < 0.001). We estimate an improvement of 3.4

percentage points from AI assistance without automation, as opposed to predictions of

5.4 percentage points and 6.2 percentage points from Stage 2 and Stage 1 respectively.

5. Simple disclosure polices are approximately optimal. Accuracy under FDNA

does not significantly exceed that under SL (p = 0.724). Our experimental estimates

suggest a small gain of 0.2 percentage points from using SL over FDA, whereas our

predictions suggest a loss of 0.3 percentage points using either estimate of V .

These qualitative and quantitative conclusions are all robust to using an across-participant

comparison based on the first treatment participants encounter, including controls for the

treatment order or the number of prior statements assessed by the participant, or including

participant fixed effects (see Table A.4).

As these qualitative conclusions were based on predictions about counterfactual accuracy

made using Assumption 1, they represent a strong test of the sufficient-statistic approach.

There are, however, some departures from the more stringent standard of matching the

model’s quantitative predictions. In particular, we correctly predict the quantitative value of

automation (prediction 1) relative to the Stage 2 estimate of V but not relative to the Stage

1 estimate; and we mis-predict the quantitative value of AI assistance when automation is

infeasible (prediction 4) for either the Stage 1 or Stage 2 estimate of V .

Table 2 provides results on the specific policies where our predictions do not match the

experimental estimates. Columns 3 and 5 show that we cannot reject that accuracy under

FDA, NDA, or SL equals the predicted accuracy using either estimate of V . However,

accuracy under FDNA is 1.2 percentage points lower (p = 0.008) than accuracy from Stage
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Table 2: Estimated Versus Predicted Accuracy

Stage 2 Stage 1
Treatment Stage 2 Estimate Predicted P-value Predicted P-value

(1) (2) (3) (4) (5)

Panel A:
Full Disclosure + No Automation 0.723 - - 0.735 0.014

(FDNA) (0.004) (0.003)

Panel B: Automation
Full Disclosure 0.749 0.748 0.783 0.751 0.368

(FDA) (0.002) (0.003) (0.002)

No Disclosure 0.747 0.744 0.265 0.748 0.748
(NDA) (0.001) (0.003) (0.002)

Panel C: No Automation
No Disclosure 0.689 0.669 0.033 0.673 0.025

(NDNA) (0.004) (0.009) (0.006)

Stoplight 0.725 0.720 0.473 0.732 0.192
(SL) (0.004) (0.006) (0.004)

Joint Test – – 0.227 – 0.007

Note: In column (1), Stage 2 Estimate is the estimated accuracy from Stage 2 data. In column (2), Predicted is the predicted
accuracy computed from Stage 2 data. In column (4), Predicted is the predicted accuracy computed from Stage 1 data, except
for the FDNA row, which contains the observed accuracy in Stage 1. Columns (3) and (5) contain the P-value from the test
where the null sets the Predicted and Stage 2 Estimate values to be the same. Standard errors are in parentheses. Predicted
standard errors are computed via block bootstrap clustered at the participant level, and the Stage 2 Estimate standard errors
are two-way clustered at the participant and case level. The Stage 2 p-values are based on a block bootstrap clustered at the
participant level.

1; and accuracy under NDNA is 2.0 and 1.6 percentage points higher than the predicted

accuracy using the estimate of V from Stage 2 and Stage 1, respectively (p-values < 0.05).

There are two distinct reasons why the predictions from the two stages may miss the

experimental estimates. The first is that details of the experimental protocol might affect

our participants’ performance. For instance, there may be subtle differences in participants

between the two stages, participants may learn how to use the AI differently in the two stages,

and there may be effects of participants being exposed to multiple treatments in Stage 2.

Figure 9a shows that the estimates of V from the two stages are similar—we cannot reject

that the function V estimated in Stage 1 equals the same function estimated using Stage 2

FDNA data (p = 0.285). However, panel A of Table 2 shows that accuracy under FDNA is
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lower in Stage 2 (72.3%) than in Stage 1 (73.5%).32 These differences do not imply a violation

of Assumption 1, but they may explain why the predicted value of automation based on the

Stage 1 estimate of V is quantitatively inaccurate, while the prediction based on the Stage 2

estimate is accurate.

The second reason is a violation of Assumption 1: participants’ accuracy may not depend

only on the mean AI assessment. Participants’ greater accuracy under NDNA in Stage 2 rel-

ative to the model’s predictions may reflect such a violation. Specifically, a likely explanation

for this finding is that cases where the AI is confident are also easier for human participants,

so that participants’ average accuracy under NDNA is better than their accuracy on cases

with the average AI assessment ϕ. Figure 9b points to this hypothesis. It plots participant

accuracy as a function of the AI assessment θ under NDNA, where θ is not disclosed. It

can be shown that Assumption 1 implies that this accuracy curve must be linear in θ for

a Bayesian decision-maker, so Figure 9b suggests a likely violation of Assumption 1. How-

ever, the magnitude of the violation is small: participants’ average accuracy under NDNA

is 1.6 percentage points higher than their accuracy on cases with the average AI assessment

ϕ, suggesting that cases where the AI is more confident are only slightly easier for human

participants. (To benchmark this number, note that predicted accuracy under the “oppo-

site” assumption that human and AI signals are perfectly correlated is 73.5%—i.e., the same

prediction as under FDNA—which exceeds actual accuracy under NDNA by a much larger

4.6 percentage points.)

Another way to evaluate the sufficient-statistic approach is to compare the predicted

accuracy at specific posteriors x to estimates from Stage 2. These estimates are displayed in

Figure 9c, which shows that realized Stage 2 accuracy at the induced posteriors under NDA

and NDNA—as well as at each of the three induced posteriors under SL—all closely match

the corresponding values of V (x) from the Stage 1 estimate of the function V . Our accuracy

predictions are thus on point for each induced posterior, not just on average.

Overall, while predicted accuracy differs somewhat from estimated accuracy in a couple

treatments, the sufficient-statistic approach based on Assumption 1 provides a useful guide

to designing automation/disclosure policies in our setting.

32The difference is statistically significant (p = 0.014). Participants were also faster in Stage 2 than Stage
1. This can be explained by participants assessing more statements in Stage 2 while their assessments become
faster over time (see Appendix A.3).
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Figure 9: Stability

(a) Difference between Stage 1 and 2 Accuracy
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(b) Accuracy as a Function of θ under NDNA
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(c) Predicted vs Estimated Accuracy
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Note: Figure 9a plots the difference in accuracy between Stage 1 and Stage 2, V1(x)−V2(x), estimated via local linear regression
separately for Stage 1 and Stage 2. Figure 9b plots accuracy conditional on θ for Stage 2 under the NDNA treatment estimated
by local linear regression. Figure 9c plots accuracy conditional on x for Stage 1 via the function V estimated by local linear
regression. The dashed lines indicate the accuracy under automation of max{x, 1 − x}. Accuracy by x under each policy is
estimated by regressing a correct indicator on indicators for each AI assessment shown. The 95% point-wise confidence intervals
for each point are two-way clustered at the participant and case level. For all three figures, the 95% uniform confidence band is
computed via bootstrap accounting for clustering at the participant and case level.
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Figure 10: Comparing Participant and Optimal Classifier Accuracy

(a) Participant vs. Classifier Accuracy
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(b) Participant vs. Classifier V
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Notes: Panel (a) plots accuracy under FDNA, FDA, and the optimal classifier. The horizontal dashed line is the accuracy of a
classifier with no information that classifies all statements as True. Panel (b) plots the Stage 1 estimate of V and the estimated
accuracy of the optimal classifier V Opt.

5.2 Optimal Classifier Benchmark

We now calculate the accuracy of an optimal classifier V Opt that uses both participants’

reported assessments pij under FDNA and the AI assessments θi to classify each case i.33

The optimal classification for case i is True if and only if Pr(ω = 1|pij, θi) exceeds 0.5. We

nonparametrically estimate Pr(ω = 1|p, θ) as a function of (p, θ) using the FDNA sample

from both stages. To avoid overfitting, we use a penalized logistic regression with polynomial

terms in p and θ, where we use cross-validation to select the model to minimize expected

out-of-sample loss.34 Figure 10a compares accuracy under the tested policies to the optimal

classifier V Opt.

Our first result from this exercise is that average accuracy under the optimal classifier

(75.3%) is statistically indistinguishable from accuracy under FDA (75.0%). This result im-

plies that one-way communication from AI to humans is without loss of optimality: the opti-

mal policy in our design space with no elicitation of participants’ assessments (FDA) cannot

be significantly improved by eliciting participants’ assessments. Intuitively, this is a conse-

quence of two properties of the classifier indirect utility function V Opt, which is plotted along-

side the human indirect utility function V in Figure 10b. First, V Opt is indistinguishable from

human accuracy V for AI assessments where delegation to a human is optimal (i.e., where

33Guo et al. (2025) uses a related approach to measure the additional information contributed by an AI
system over and above the information contained in humans’ decisions.

34Appendix E contains full details of the estimation.
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V (θ) ≥ max{θ, 1− θ}). Second, V Opt(θ) is indistinguishable from AI accuracy max{θ, 1− θ}
for AI assessments where automation is optimal (i.e., where V (θ) < max{θ, 1−θ}). Together,
these properties imply that selective automation achieves the optimal classifier benchmark.

Our second result is that accuracy under the optimal classifier is significantly greater than

that under FDNA. This result implies that the impact of participants’ under-response to AI

on accuracy is substantial. If participants were Bayesians who knew the joint distribution

of (p, θ, ω), their accuracy would be at least as high as the optimal classifier benchmark,

because participants’ know their own assessments and the AI assessment and may also have

additional information. This comparison gives a lower bound for the impact of non-Bayesian

updating on participant accuracy. Thus, at least (75.32%− 73.26%)/(1− 73.26%) = 7.7% of

incorrect classifications under FDNA are attributable to deviations from Bayesian updating.

Section 6 further unpacks the deviations from Bayesian updating that are responsible for

this result.

5.3 Impact on Effort

Table 3 presents estimated treatment effects on our three measures of participant effort,

relative to the baseline FDNA policy. It uses estimates from the model in equation (5) and

reports βk0 for FDNA and βk − βk0 for the remaining policies.

Disclosing AI assessments crowds out human effort, consistent with Figure 7: our effort

measures are between 8% and 13% lower under FDNA as compared to NDNA.35. While this

effort response is substantial, it is smaller than some related estimates in the literature: for

example, Dell’Acqua (2022) finds that disclosing more precise AI assessments reduced effort

by nearly 40%.

As with the estimated treatment effects on accuracy, this result is robust to a number

of variations in the analysis (see Tables A.5, A.6, A.7, and A.8). When using the across-

participant design based on the first treatment encountered—Table A.5—the treatment ef-

fects are similar to the within-participant design, except the baseline for measures of effort

is higher. This can be explained by the fatigue effects presented in Table A.3.

The next section presents additional results on the impact of effort crowd-out on the

informativeness of humans’ signals.

35Effort under Stoplight is indistinguishable from that under FDNA, consistent with these two policies
being very similar

33



Table 3: Average Treatment Effects on Effort

Treatment
External
Sources

Clicked
Google

Time
Taken (s)

(1) (2) (3)

Panel A: No Automation Baseline (β0)
Full Disclosure 0.630 0.372 44.551

(0.009) (0.009) (0.730)

Panel B: Automation Treatment Effects (βk − β0)
Full Disclosure -0.357 -0.209 -24.515

(0.007) (0.007) (0.560)
No Disclosure -0.412 -0.240 -28.523

(0.007) (0.007) (0.586)

Panel C: No Automation Treatment Effects (βk − β0)
No Disclosure 0.064 0.046 3.749

(0.006) (0.006) (0.586)
Stoplight 0.003 0.002 0.091

(0.005) (0.006) (0.529)

Observations 80000 80000 80000

Note: Average treatment effects (estimated using equation 5) of different polices on effort. In FDA and NDA, outcomes have
been adjusted to account for automation as described in Footnote 31.

6 Mechanisms: Overconfidence, AI Neglect, and Effort

Crowd-Out

The estimates presented in Sections 4 and 5 show that our participants under-respond to

AI assessments and reduce effort when presented with confident AI assessments. This sec-

tion analyzes participants’ biases in belief updating and the impact of effort crowd-out on

accuracy.36

Specifically, we distinguish between participants’ overconfidence in the precision of their

own information and under-confidence in the precision of AI information—which we refer to

as AI neglect. Empirically distinguishing overconfidence from AI neglect requires additional

assumptions to nonparametrically identify the distribution of participants’ private informa-

tion and their model of belief updating. Under these assumptions, we also show that the

36The analyses in this section were not pre-registered.
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reduction in participant accuracy due to measured effort crowd-out is modest in magnitude.

6.1 Over- and Under-Inference

We will use the following general definition of over- or under-inference from a signal to define

overconfidence and AI neglect. Consider an agent who observes a vector of N real-valued

signals s = (s1, . . . , sN) ∈ RN of a binary state ω ∈ {0, 1}. Assume that each signal sn is

ordered by likelihood ratios, so that Pr(sn = s|ω = 1)/Pr(sn = s|ω = 0) is increasing in

s ∈ R. For example, this property holds if each signal sn is calibrated (i.e., sn ∈ [0, 1] and

Pr(ω = 1|sn = s) = s for all s ∈ [0, 1]).37

Let p(s) ∈ [0, 1] denote the agent’s assessment of the probability that ω = 1 at signal

vector s, and let pBayes(s) = Pr(ω = 1|s) be the corresponding Bayesian assessment. We say

that the agent over-infers from a signal sn if the proportional increase in her posterior odds

ratio of ω = 1 to ω = 0 from observing a higher signal sn is always greater than that for a

Bayesian: that is, if

p(s′n, s−n)

1− p(s′n, s−n)

1− p(sn, s−n)

p(sn, s−n)
>

pBayes(s′n, s−n)

1− pBayes(s′n, s−n)

1− pBayes(sn, s−n)

pBayes(sn, s−n)
,

for all s′n > sn and all s−n ∈ RN−1 such that 0 < p(sn, s−n) ≤ p(s′n, s−n) < 1.

Similarly, the agent under-infers from sn if the same condition holds with the reverse inequal-

ity. Note that if p is continuously differentiable then, letting logit x = log x
1−x

, an equivalent

definition of over-inference from sn is

∂

∂sn
logit p(sn, s−n) >

∂

∂sn
logit pBayes(sn, s−n) for all s ∈ RN such that 0 < p(s) < 1. (6)

As far as we know, this definition of over-inference is novel, although it has some close

predecessors. The closest is in Augenblick et al. (2025), which defines a notion of the perceived

strength Ŝ(s) of a signal s and say that an agent over-infers from s if they over-perceive the

strength of s and then update according to Bayes’ rule. With a single signal, Augenblick et

al.’s definition appears to have the same implications for belief updating as ours, but we allow

multiple signals and do not invoke the notion of perceived signal strength. Our definition

also generalizes those in Grether (1980) and Agarwal et al. (2023). In particular, if signals

are conditionally independent and calibrated, and we rewrite (6) in an equivalent form where

the derivatives are taken with respect to logit sn rather than sn, then the right-hand side is

37In this case, Pr(sn=s|ω=1)
Pr(sn=s|ω=0) =

1−ϕ
ϕ

Pr(ω=1|sn=s)
Pr(ω=0|sn=s) =

1−ϕ
ϕ

s
1−s , where ϕ = Pr(ω = 1).
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1 and the left-hand side is the Grether coefficient on signal sn.
38

In our setting, humans obtain two calibrated signals—a private signal s (described be-

low) and the disclosed AI assessment x—and combine them to form an assessment f(s, x).

Applying the above general definition, we say that humans are overconfident in their own

signal if they over-infer from s, and that they display AI neglect if they under-infer from x.

6.2 Identifying Participant Signals and Updating

The following assumptions let us identify participants’ signals and belief updating model.

Assumption 2.1 Humans observe a one-dimensional signal sij ∈ [0, 1] that is distributed

iid conditional on ωi, eij, θi with cumulative distribution function (CDF) Gωi,eij ,θi, where eij

is the vector of observed measures of effort. Without loss of generality, we normalize sij =

P (ωi = 1|sij), so the human signal is calibrated.

Assumption 2.2 Humans’ reported assessments pij are determined by their own signals sij

and the disclosed AI assessments xi according to a function p(sij, xi) = pij, which is monotone

in sij.

Assumption 2.1 imposes two restrictions. First, the distribution of human signals does

not depend on the disclosure policy or the disclosed AI signal xi conditional on ωi, eij, θi.
39

In particular, our observed measures of effort eij—time taken, an indicator for the reported

use of external sources, and an indicator for clicking the Google search link—are sufficient

controls for the dependence of the human signal sij on the disclosed AI signal xi. Second,

while the distribution of effort can vary across human participants, the signal distribution is

the same across participants conditional on effort.

Assumption 2.2 imposes three restrictions. First, the human assessment pij depends only

on the human signal sij and the disclosed AI assessment xi and not on other observables

(such as effort eij). Second, the assessment is monotone in the human signal.40 For example,

Assumption 2.2 holds if humans are Bayesian with conditionally independent signals. It also

holds if humans are quasi-Bayesians who act as if their signals are conditionally independent

38In the conditionally independent case, the models in Grether (1980) and Agarwal et al. (2023) assume that

logit p(s) =
∑N

n=1 an (logit Pr(ω = 1|sn)− logit Pr(ω = 1)) + b logit Pr(ω = 1) for parameters a1, . . . , aN , b.
For pBayes(·), we have that a1 = . . . = aN = b = 1.

39We allow for dependence on θi because the AI assessment can be statistically dependent. The distribution
of signals can also depend on the disclosure policy or the disclosed signal, but only via observed effort.

40It is natural to assume that the assessment is also monotone in the disclosed AI assessment xi, but our
identification strategy does not require this assumption.
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of the AI signal and may over- or under-weight either signal, as in Grether (1980) or (Agarwal

et al., 2023). Third, the function p(·) is the same for all participants.

Assumptions 2.1 and 2.2 allow us to identify and estimate p(·). We first explain how to

calculate p(s, x) at s and x = θ from the the conditional CDFs of human assessments p and

human signals s given each AI assessment θ under FDNA, which we denote by Fp|θ and Fs|θ,

and then explain how we identify and estimate these CDFs. By Assumption 2.2, for any

human signal s and AI signal θ in FDNA, we have

Fs|θ(s) = Fp|θ(p(s, θ)).

Thus, inverting the CDF Fp|θ gives

p(s, θ) = F−1
p|θ

(
Fs|θ (s)

)
. (7)

The conditional CDF Fp|θ is observed under FDNA and we estimate it nonparametri-

cally.41 The remaining task is to identify and estimate Fs|θ. We accomplish this in two

steps.

First, we identify and estimate the human signal distribution Gωi,eij ,θi using data from

NDNA. By Assumption 2.1, Gωi,eij ,θi is independent of the disclosure policy and the disclosed

AI assessment xi, conditional on (ωi, eij, θi). Under NDNA, the disclosed AI assessment xi is

constant at the prior ϕ, while participants report continuous assessments pij of the probability

that each statement i is true. Since xi is constant, Assumption 2.2 implies that pij is a

deterministic function of sij, and hence Pr(ωi = 1|pij) = Pr(ωi = 1|sij) = sij. Thus, under

NDNA sij, ωi, eij, and θi are observable, and hence we can identify and estimate Gωi,eij ,θi

nonparametrically (see footnote 41).

Next, the conditional CDF Fs|θ can be calculated from Gωi,eij ,θi identified from the NDNA

data by integrating over the observed joint distribution of ωi and eij in FDNA. We estimate

this distribution fitting a conditional distribution model (see footnote 41) to 100,000 simu-

lated draws from the joint distribution of sij, eij, θi, and ωi in the FDNA arm. To generate

these draws, we first sample from the joint distribution of eij, θi, and ωi using an accept/reject

41We estimate all conditional CDFs of the form Fy|θ(z) using a logistic regression of the indicator 1[y ≤ z]
on θ including second-order polynomials and all second-order interactions when z is a vector. We estimate
this for a grid of z to trace out the full conditional CDF (Chernozhukov et al., 2013). When the CDF is
non-monotonic we apply the rearrangement procedure described in Chernozhukov et al. (2010).
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sampler.42,43 Then, we sample sij from the conditional distribution Gωi,eij ,θi estimated earlier

using inverse transform sampling.

Finally, we use a plug-in estimator that replaces the conditional distributions of p and s

with the estimated analogues in equation (7).44

6.3 Overconfidence or AI Neglect?

Having estimated our participants’ belief updating rule p(s, x), we can now compare it to

the Bayesian benchmark pBayes(s, x) to decompose the AI under-response found in Section 4

into overconfidence in participants’ own signals and AI neglect.

We estimate pBayes(s, x) through a penalized logistic regression of ω on s and x in the

100,000 samples of ω, s, and θ from the FDNA arm described above (see Appendix E for

estimation details).

Figure 11 presents estimates of our participants’ update function p (blue curve) and the

Bayesian benchmark rule pBayes (orange curve), as well as the Bayesian benchmark imposing

conditional independence (green curve; a line of slope 1 in log odds space). The panels

hold either s or x fixed at a specific value while varying the other signal in log odds space.

(Appendix Figure C.7 presents a corresponding surface plot.) A first observation is that

the two Bayesian benchmarks are quite similar, implying that conditional independence is a

reasonable approximation.

Figures 11a–11c show strong evidence of overconfidence. Recall that, as defined in Section

6.1, overconfidence means that logitp is steeper than logitpBayes when s varies, and AI neglect

means that logit p is flatter than logit pBayes when θ varies. Correspondingly, the slope of

logit p with respect to s in Figures 11a–11c is much larger than the Bayesian benchmark.

This overconfidence results in participants reporting more extreme probability assessments

than a calibrated decision maker (as shown in Figure 6), as well as in AI under-response

(e.g., V (x) < max{x, 1− x} for x near 0 or 1).

42We estimate the joint distribution of eij , θi, and ωi in the FDNA arm using kernel density estimation.
We use a Gaussian kernel for all continuous variables and Silverman’s rule to select bandwidths (Silverman,
2018). We manually select a bandwidth of 0 for all binary variables.

43In the FDNA arm, P (ωi = 1) = 0.657, while P (ωi = 1) = 0.649 in the NDNA arm. While we cannot
reject that this difference is zero (p = 0.14), we sample from the population distribution of ωi to impose
balance.

44This approach to identifying participants’ update rule has several advantages over the one in Agarwal
et al. (2023). Agarwal et al. (2023) requires participants to assess the same case twice, once with AI assis-
tance and once without. In addition, our approach allows (observed) effort responses to influence the signal
distribution. However, we require human signals to be one-dimensional.
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Figure 11: Human vs Bayesian Update Rule
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(c) x = 0.8
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(d) s = 0.4
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(e) s = 0.65
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(f) s = 0.8
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Note: This figure summarizes the human and Bayesian update rules. Panels (d)-(f) plot p(s, x) and P (ω = 1|x, s) for different values of s and Panels (a)-(c) plot these
functions for different values x. All figures are in log-odds space.
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In contrast, Figures 11d–11f show weaker evidence of AI neglect: the slopes of logit f

and logit fBayes with respect to θ are fairly similar, although logit f is somewhat flatter,

indicating some degree of AI neglect. The vertical shifts in the logit f(s, ·) curve relative to

logit pBayes(s, ·) at s = 0.4 and s = 0.8 reflect overconfidence.

Overall, Figure 11 shows strong evidence of overconfidence, as well as some evidence of

AI neglect.

Next, we quantify the relative impact of overconfidence and AI neglect by comparing the

accuracy of a decision-maker who exhibits only automation neglect or only overconfidence.

To do so, we define the human assessment corrected for overconfidence as p̃(s, x) such that

logit p̃(s, x) =logit pBayes(s, x) + logit p(ϕ, x)− logit pBayes(ϕ, x),

where ϕ = Pr(ω = 1) is the prior mean. Here, ∂
∂s
logit p̃ = ∂

∂s
logitpBayes, so p̃ and the Bayesian

benchmark respond equally to changes in the human signal, which removes overconfidence.

The remaining terms are set so that p̃(ϕ, ϕ) = p(ϕ, ϕ) to ensure that p̃ matches the human

assessment when s and x are uninformative; and ∂
∂x
logit p̃(ϕ, x) = ∂

∂x
logit p(ϕ, x) to ensure

that f̃ and the human assessment respond equally to changes in x when s is uninformative.

Similarly, we define the human assessment corrected for AI neglect as p̌(s, x) such that

logit p̌(s, x) =logit pBayes(s, x) + logit p(s, ϕ)− logit pBayes(s, ϕ).

Figure 12a plots the decision threshold in (logit x, logit s)-space for humans, Bayesians,

and humans corrected for overconfidence or AI neglect. We see that the decision threshold

for overconfidence-corrected humans is very close to the Bayesian benchmark, while the

threshold for AI neglect-corrected humans is very close to that for uncorrected humans.

Correspondingly, Figure 12b shows that correcting AI neglect increases accuracy by only

0.1 percentage points, while correcting overconfidence increases accuracy by 1.7 percentage

points (out of a possible improvement of 2.2 percentage points for the Bayesian benchmark).

These results show that overconfidence—not AI neglect—is the main reason our participants

deviate from optimal Bayesian decisions.

Our result that AI under-response is primarily due to overconfidence rather than AI

neglect differs from that in Agarwal et al. (2023), which finds evidence for AI neglect but not

overconfidence among professional radiologists.45 One possible hypothesis for this difference

is that professional decision-makers (e.g., the radiologists in Agarwal et al. (2023)) understand

45Agarwal et al. (2023) estimates the Grether model where logit p(s, x) = a+ b logit s + c logit x, finding
that b = 0.3 and c = 1.1. In contrast, estimating the same model with our data yields b = 0.8 and c = 2.3.
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Figure 12: Decomposing Overconfidence and AI Neglect

(a) Impact of Biases on Decision Threshold
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Note: Panel (a) plots the decision threshold for various decision-makers. Each curve is the set of points (s, x) where p(s, x) = 0.5
for each decision-maker. The range of the y-axis is the support of logit s. Panel (b) plots the accuracy of each decision-maker
relative to human participants.

their own abilities but distrust outside advice, while amateurs (e.g., our participants) over-

estimate their own abilities but are more open to advice.

6.4 Impact of Effort Crowd-Out on Human Signal Quality

Our identification of Gωi,eij ,θi under Assumptions 2.1 and 2.2 also lets us measure the impact

of effort crowd-out on the precision of human signals. Specifically, we use our estimate of

Gωi,eij ,θi to compare the quality of the human signal s under FDNA and NDNA for various

ranges of the AI assessment θ: θ < 0.25, θ ∈ [0.25, 0.75], and θ > 0.75. Table 4 presents the

treatment effect of disclosure on our observed measures of effort and human signal precision

calculated using our estimate of Gωi,eij ,θi .

Panel A shows that disclosing the AI assessment reduces our three effort measures for all

AI assessment ranges. The decline in effort is much larger when the AI is confident (θ < 0.25

or θ > 0.75). This is intuitive and is consistent with the overall treatment effects on effort

documented in Section 5.3.

Panel B shows that this effort crowding-out also reduces three measures of human signal

precision. The first row shows that effort crowding-out increases the root mean-square error

of the human signal. The second row shows that it reduces the probability that the human

signal alone would result in a correct classification. The third row shows that it increases

the probability that the human signal is insufficient to overturn the prior favoring classifying

cases as True.46 All of these reductions in precision are concentrated on statements that the

46Recall that 65.4% of cases in the database are true.
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Table 4: Impact of Disclosing AI Assessment on Effort Human Signal Precision

θ < 0.25 θ ∈ [0.25, 0.75] θ > 0.75 All Statements

Panel A: Effort Measures
External Sources -0.074 -0.029 -0.106 -0.064

(0.019) (0.008) (0.009) (0.006)
Clicked Google -0.039 -0.019 -0.080 -0.046

(0.019) (0.008) (0.010) (0.006)
Page Time (Seconds) -4.361 -1.033 -7.037 -3.749

(1.686) (0.759) (0.823) (0.586)

Panel B: Human Signal
RMSE 0.010 -0.001 0.004 0.001

(0.004) (0.001) (0.002) (0.001)
Pr(Correct|sij) -0.027 0.002 -0.003 -0.001

(0.013) (0.003) (0.004) (0.002)
Pr(True|sij) 0.023 0.001 0.007 0.004

(0.014) (0.003) (0.003) (0.002)

Note: Impact of FDNA relative to NDNA on effort and the precision of the human signal s. We report all measures averaging
over all statements as well as conditional on the AI assessment θ. Panel (a) reports differences in participant effort under FDNA
relative to NDNA. Panel (b) reports the treatment effect of FDNA relative to NDNA on the root mean squared error of the

human signal (RMSE=
(
E
[
(Pr(ω = 1|s)− ω)2

])1/2
), the probability of correctly classifying a statement based on the human

signal (Pr(Correct) = Pr(1[Pr(ω = 1|s) > 1/2] = ω)), and the probability of classifying a statement as True based on the human
signal (Pr(True) = Pr(Pr(ω = 1|s) > 1/2)). Bootstrapped standard errors in parenthesis.

AI is confident are false (θ < 0.25). A possible explanation for the asymmetry between cases

where θ < 0.25 and where θ > 0.75 is that, since cases where θ < 0.25 are rare (see Figure

4), disclosing that θ < 0.25 has a larger effect on participant effort and beliefs.

Overall, Table 4 provides modest evidence that effort crowding-out due to AI disclosure

reduces human signal precision and contributes to the value of selective automation. However,

the effect sizes are much smaller than what might be expected from other studies (e.g.,

Dell’Acqua (2022)).

7 Conclusion

Collaboration between humans and AI already profoundly affects organizational decision-

making and job design, and its importance will only grow over time (Daugherty and Wilson,

2018; Mollick, 2024). The design of effective human-AI collaborative systems is thus a press-

ing concern. The standard approach to this problem in the current literature is “algorithmic
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triage” (Raghu et al., 2019; Mozannar and Sontag, 2020; Agarwal et al., 2023), which focuses

on deciding which cases to automate and which to assign to humans, with or without AI

assistance. However, this approach does not allow richer designs that partially disclosure AI

information, and it also does not account for the endogenous response of human beliefs and

effort to the set of cases that are assigned to humans and the AI assistance provided. More-

over, the dimensionality of the space of possible collaborative designs and the complexity

of possible human responses imply that optimal designs cannot be found by straightforward

experimentation.

Our contribution is to show that, for binary classification problems, the optimal design can

be found by estimating a simple sufficient statistic: the probability of correct classification

as a function of the disclosed posterior. We validate this approach in the context of an online

fact-checking experiment, where we show that the optimal policy automates cases where

the AI is confident and delegates the remaining cases to human decision-makers while fully

disclosing the AI assessment. At the same time, even simpler policies—such as selective

automation without direct human-AI communication—are approximately optimal. We also

show that the value of automation stems from human under-response to AI information,

which in turn results from human over-confidence in the precision of their own information,

rather than under-confidence in the AI.

A promising avenue for future research is to broaden the scope of human-AI collaboration

design beyond binary classification and prediction problems—while this class of problems

includes many important examples, extending the approach to higher-dimensional prediction

problems would also be valuable. As discussed in Section 2, this extension would build on the

general information design framework in Kamenica and Gentzkow (2011), rather than the

more specialized framework in Dworczak and Martini (2019) that we utilize. More broadly,

designing human-AI collaboration for problems other than prediction is another open area.

The space of collaborative policies considered can also be enlarged. For example, while

we document substantial effort response to AI information disclosure, we do not consider

the joint design of an information disclosure policy and an incentive contract. Similarly, we

document significant biases in belief updating in response to AI information, but we do not

consider policies targeting at reducing these biases, such as training humans to put more

weight on AI information or less weight on their own information.

In addition to designing human-AI collaboration, our sufficient statistic can also be used to

evaluate changes in the quality of AI information. In our framework, changing the underlying

predictive AI tool corresponds to changing the distribution F over AI assessments θ. It is

thus straightforward to calculate how changes in the AI affect the optimal collaborative policy
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and the resulting decision accuracy. We leave this direction for future work.

Finally, we consider a setting where the statements to be classified are politically neutral,

and the designer’s objective of maximizing classification accuracy is aligned with the agent’s

(except for effort costs borne by the agent). An interesting avenue of research is designing AI

information provision to persuade agents who may have misaligned objectives or motivated

beliefs. This case may be relevant for fact-checking politically charged statements.
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Appendix

A Data Appendix

A.1 Effort Response for Additional Effort Measures

Figure A.1: Effort Response for Additional Effort Measures
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Note: Plots of additional effort measures conditional on x. The curves are estimated via local linear regression and the confidence
bands represent bootstrapped 95% uniform confidence bands.

A.2 Balance Tests

All participants in Stage 2 were exposed to all 5 treatments in a random order. To ensure

randomization was successful, we test for balance in covariates based on the first treatment

encountered. Table A.1 shows the average covariate value by first treatment encountered.

Table A.1: Covariate Balance in Stage 2

NDNA FDNA SL FDA NDA P-value

Total approvals 1112.93 1273.17 1258.97 1016.13 1249.95 0.15
Age 44.31 44.25 44.92 45.20 44.20 0.84
Sex 0.47 0.51 0.54 0.49 0.48 0.31
Share white 0.64 0.63 0.62 0.68 0.65 0.49

Note: Means are computed for each demographic variable conditional on the first treatment seen. “Total approvals” represents
the total Prolific studies completed (i.e. approved) by the participant. The p-values are from the joint Wald test that the mean
covariates are equal across the five treatments.
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Table A.2: Representativeness of Study Participants

Stage 1 Stagef 2
US Census Sample P-value Sample P-value

Age Distribution
18-24 0.12 0.12 0.634 0.12 0.281
25-34 0.17 0.18 0.921 0.19 0.071
35-44 0.17 0.17 0.675 0.18 0.149
45-54 0.16 0.16 0.754 0.16 0.630
55+ 0.38 0.37 0.334 0.34 0.000

Share Male 0.49 0.49 0.642 0.50 0.561
Share White 0.62 0.63 0.192 0.64 0.010

Note: The means are estimated from Stages 1 and 2. The US Census values are calculated from US Census Bureau population
group estimates from 2021 and normalized (accounting for the lack of participants < 18 years of age.) The p-value is computed
with the null that the sample average is equal to the US Census value.
∗ To set up a representative sample, Prolific stratifies the age into five buckets: 18-24, 25-34, 35-44, 45-54 and 55+. Participants
are then further stratified based on sex and ethnicity, resulting in a total of 50 subgroups.

Table A.3: Pipeline of Study Participants

Status Stage 1 Stage 2

Reached Consent 1656 2289
Consented 1648 2279
Began Study 1536 2087
Completed 1501 2000

Note: Table computes the number of participants under various study outcomes. Reached Consent is the number of participants
that viewed the consent page. Consented is the number of participants that provided consent. Began Study denotes the number
of participants that completed the five practice claims. Completed is the number of participants who successfully completed the
study without technical issues.
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A.3 Robustness

Table A.4: Average Accuracy by Treatment

Treatment (1) (2) (3) (4) (5)

Panel A: No Automation Baseline (β0)
Full Disclosure 0.723 0.721 0.723 0.727 0.728

(FDNA) (0.004) (0.009) (0.003) (0.005) (0.004)

Panel B: Automation Treatment Effects (βk)
Full Disclosure 0.749 0.752 0.749 0.753 0.754

(FDA) (0.002) (0.004) (0.002) (0.003) (0.004)
No Disclosure 0.747 0.750 0.747 0.751 0.752

(NDA) (0.001) (0.003) (0.002) (0.003) (0.004)

Panel C: No Automation Treatment Effects (βk)
No Disclosure 0.689 0.686 0.689 0.693 0.693

(NDNA) (0.004) (0.008) (0.003) (0.005) (0.004)
Stoplight 0.725 0.743 0.725 0.729 0.730

(SL) (0.004) (0.008) (0.003) (0.005) (0.004)

Observations 80000 16000 80000 80000 80000

Note: This table summarizes estimates of the average treatment effect on accuracy (proportion correct) in Stage 2 for different
specifications. Column (1) estimates the treatment effect without controls or fixed effects. Column (2) only uses data from the
first treatment encountered for each participant. Column (3) includes participant and case fixed effects. Column (4) controls for
treatment order. Column (5) controls for the number of prior claims encountered. Each model is estimated via OLS. In panel
B, the outcomes have been adjusted to account for automation. Standard errors in parentheses are two-way clustered at the
participant and claim level.
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Table A.5: Average Treatment Effects on Effort (Across)

Treatment
External
Sources

Clicked
Google

Time
Taken (s)

(1) (2) (3)

Panel A: No Automation Baseline (β0)
Full Disclosure 0.709 0.457 57.828

(0.018) (0.020) (1.722)

Panel B: Automation Treatment Effects (βk − β0)
Full Disclosure -0.428 -0.272 -33.515

(0.019) (0.022) (1.864)
No Disclosure -0.473 -0.306 -38.263

(0.019) (0.021) (1.810)

Panel C: No Automation Treatment Effects (βk − β0)
No Disclosure 0.035 0.041 -0.241

(0.025) (0.029) (2.424)
Stoplight 0.003 0.003 0.121

(0.025) (0.028) (2.425)

Observations 16000 16000 16000

Note: The average treatment effect is estimated using equation 5. Only the first treatment encountered for each participant
is included. This table summarizes the across average treatment effects of different information environments on effort. In
treatments full disclosure + automation and no disclosure + automation, the outcomes have been adjusted to account for
automation. Time taken (s) is measured in seconds and winsorized to the 95th percentile. Standard errors are two-way
clustered at the participant and claim level in parenthesis.
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Table A.6: Average Treatment Effects on Effort (Participant and Case Fixed Effects)

Treatment
External
Sources

Clicked
Google

Time
Taken (s)

(1) (2) (3)

Panel A: No Automation Baseline (β0)
Full Disclosure 0.630 0.372 44.551

(0.004) (0.004) (0.383)

Panel B: Automation Treatment Effects (βk − β0)
Full Disclosure -0.357 -0.209 -24.515

(0.007) (0.007) (0.568)
No Disclosure -0.412 -0.240 -28.523

(0.007) (0.007) (0.595)

Panel C: No Automation Treatment Effects (βk − β0)
No Disclosure 0.064 0.046 3.749

(0.006) (0.007) (0.593)
Stoplight 0.003 0.001 0.091

(0.005) (0.006) (0.536)
Observations 80000 80000 80000

Note: The average treatment effect is estimated using equation 5 with additional fixed effects at the participant and case levels.
This table summarizes the average treatment effects of different information environments on effort. In treatments full disclosure
+ automation and no disclosure + automation, the outcomes have been adjusted to account for automation. Time taken (s) is
measured in seconds and winsorized to the 95th percentile. Standard errors are two-way clustered at the participant and claim
level in parentheses.
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Table A.7: Average Treatment Effects on Effort (Controlling for Order)

Treatment
External
Sources

Clicked
Google

Time
Taken (s)

(1) (2) (3)

Panel A: No Automation Baseline (β0)
Full Disclosure 0.677 0.431 53.340

(0.009) (0.010) (0.838)

Panel B: Automation Treatment Effects (βk − β0)
Full Disclosure -0.357 -0.209 -24.531

(0.006) (0.006) (0.525)
No Disclosure -0.412 -0.240 -28.503

(0.007) (0.007) (0.566)

Panel C: No Automation Treatment Effects (βk − β0)
No Disclosure 0.063 0.045 3.689

(0.006) (0.006) (0.531)
Stoplight 0.003 0.001 0.008

(0.005) (0.005) (0.477)

Observations 80000 80000 80000

Note: Note: The average treatment effect is estimated controlling for treatment order. This table summarizes the average
treatment effects of different information environments on effort. In treatments full disclosure + automation and no disclosure
+ automation, the outcomes have been adjusted to account for automation. Time taken (s) is measured in seconds and winsorized
to the 95th percentile. Standard errors are two-way clustered at the participant and claim level in parentheses.
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Table A.8: Average Treatment Effects on Effort (Controlling for Prior Statements Assessed)

Treatment
External
Sources

Clicked
Google

Time
Taken (s)

(1) (2) (3)

Panel A: No Automation Baseline (β0)
Full Disclosure 0.681 0.430 53.473

(0.004) (0.004) (0.342)

Panel B: Automation Treatment Effects (βk − β0)
Full Disclosure -0.357 -0.209 -24.523

(0.004) (0.004) (0.385)
No Disclosure -0.412 -0.240 -28.497

(0.004) (0.004) (0.385)

Panel C: No Automation Treatment Effects (βk − β0)
No Disclosure 0.063 0.045 3.690

(0.004) (0.004) (0.385)
Stoplight 0.003 0.001 0.021

(0.004) (0.004) (0.385)

Observations 80000 80000 80000

Note: Note: The average treatment effect is estimated controlling for the number of prior statements assessed. This table
summarizes the average treatment effects of different information environments on effort. In treatments full disclosure +
automation and no disclosure + automation, the outcomes have been adjusted to account for automation. Time Taken (s) is
measured in seconds and winsorized to the 95th percentile. Standard errors are two-way clustered at the participant and claim
level in parenthesis.
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A.3.1 Squared Deviation from Ground Truth

Table A.9: Average Treatment Effects on Accuracy (Deviation from Ground Truth)

Treatment Correct
Deviation from
Ground Truth

(1) (2)

Panel A: No Automation Baseline (β0)
Full Disclosure 0.723 0.338

(0.004) (0.003)

Panel B: Automation Treatment Effects (βk − β0)
Full Disclosure 0.026 -0.006

(0.004) (0.003)
No Disclosure 0.024 -0.000

(0.004) (0.003)

Panel C: No Automation Treatment Effects (βk − β0)
No Disclosure -0.035 0.032

(0.005) (0.003)
Stoplight 0.002 0.001

(0.005) (0.003)

Observations 80000 80000

Note: This table summarizes the treatment effects of different information environments on the assessment accuracy as measured
by proportion correct (column (1)) and and deviation from ground truth (column (2)). In treatments full disclosure + automation
and no disclosure + automation, the outcomes have been adjusted to account for automation. Standard errors are two-way
clustered at the participant and claim level in parenthesis.
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Table A.10: Average Treatment Effects on Accuracy (Squared Deviation from Ground Truth)

Treatment Correct
Mean Squared

Error

(1) (2)

Panel A: No Automation Baseline (β0)
Full Disclosure 0.723 0.206

(0.004) (0.003)

Panel B: Automation Treatment Effects (βk − β0)
Full Disclosure 0.026 -0.020

(0.004) (0.003)
No Disclosure 0.024 -0.021

(0.004) (0.003)

Panel C: No Automation Treatment Effects (βk − β0)
NDNA -0.035 0.021

(0.005) (0.003)
Stoplight 0.002 0.000

(0.005) (0.003)

Observations 80000 80000

Note: This table summarizes the average treatment effects of different information environments on the assessment accuracy as
measured by proportion correct (column (1)) and and deviation from ground truth squared (i.e. mean squared error) (column
(2)). In treatments full disclosure + automation and no disclosure + automation, the outcomes have been adjusted to account
for automation. Standard errors are two-way clustered at the participant and claim level in parenthesis.
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Figure A.2: V Defined Using Deviation from Ground Truth
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Note: Here V (θ) is defined as E [|pij − ωi| |θ]. V is estimated using local linear regression from Stage 1 data. The bandwidth
is chosen via leave-one-out cross validation to minimize mean squared error. The 95% uniform confidence band displayed is
computed via bootstrap accounting for clustering at the participant and case level.

A.4 Fatigue and Learning

Participants classified 35 claims in Stage 1 and 45 claims in Stage 2. We test for fatigue and

learning effects by estimating the following regression model and plotting βk in figure A.3.

yi,j =
∑

k∈ Intervals

1[ interval (i, j) = k]βk +
∑

k′∈ Policies

1[ policy (i, j) = k′]γk′ + εij (8)
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Figure A.3: Outcome by Round Number
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(b) Clicked Google Link
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(c) Used External Sources
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(d) Correct
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Note: Figure summarizes outcome by round number. For both stages, data from all treatments is used . The regression model
controls for treatment group. Observations from warm up claims are excluded. Claims are grouped into intervals of 5. The 95%
pointwise confidence intervals are two-way clustered at the participant and claim level.
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B Stability

Table B.11: Balance: Stage 1 vs Stage 2

Stage 1 Stage 2
Mean SD Mean SD Diff p-value

(1) (2) (3) (4) (5) (6)

Correct Classification 0.735 0.441 0.723 0.447 0.012 0.008

Classified as True 0.696 0.460 0.696 0.460 -0.001 0.912

Assessment 0.630 0.329 0.629 0.318 0.001 0.732

Used External Sources 0.637 0.481 0.630 0.483 0.007 0.579

Clicked Google Link 0.360 0.480 0.372 0.483 -0.011 0.383

Time Taken (s) 46.791 43.959 44.551 43.142 2.24 0.032

Observations 45030 16000

Participants 1501 2000

Cases per Participant 30 8

Note: Summary statistics of the experiment using data from the Full Disclosure - No Automation treatment. Columns (1) and
(2) present the mean and standard deviation for Stage 1, while Columns (3) and (4) present the same statistics for Stage 2.
Column (5) reports the difference between column (1) and column (3), and column (6) reports the p-value that the difference
is statistically significant. The p-value in column (6) is from a regression of the outcome on a constant and Stage 2 indicator,
with two-way clustering on participants and cases. Correct Classification is an indicator for whether the decision matches the
ground truth. Classified as True is an indicator for whether the probability reported > 0.5. Assessment is the probability true
reported. Used External Sources is an indicator for whether the participant self-reported using external sources for a particular
case. Clicked Google Link is an indicator for whether the participant clicked on the Google link provided by the experimental
interface for a particular case. Time Taken (s) is measured in seconds and winsorized to the 95th percentile.
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Figure B.4: Test for Stability and Convexity of V (θ) versus Null Distribution

(a) Stability (b) Convexity

Note: We test for stability and convexity using a two-stage procedure. First, to compute the test statistic for stability, we
estimate the weighted L1 norm (weighted by the θ density) between the V (θ) estimated from Stage 1 and the V (θ) estimated
from Stage 2. Second, we construct a null distribution through bootstrap resampling: in each iteration, we randomly split the
Stage 1 data into two groups. Then we compute the unconstrained local linear regression estimate on each half, and calculate
the weighted L1 norm between the two unconstrained estimates. The test statistic’s percentile in this null distribution provides
a p-value for the one-sided test of stability. To compute the test statistic for convexity, we estimate V (θ) using local linear
regression subject to a global convexity constraint, which we implement as a quadratic programming problem, and we save the
objective function value. To construct the null distribution, for each bootstrap draw we compute the objective function of the
unconstrained kernel regression.

Figure B.5: Stoplight Policy Predicted Accuracy by K
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Note: Figure compares the predicted accuracy based on the model with the actual accuracy observed in the experiment. The
estimated accuracy from Stage 2 at K = 1 is the average accuracy in the No Disclosure + No Automation arm; K = 3
corresponds to the average accuracy in the Stoplight + No Automation arm, and K = ∞ corresponds to the average accuracy
in Full Disclosure + No Automation arm.
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Figure B.6: Stability of Effort Response

(a) Used External Sources
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(b) Time Taken
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(c) Clicked Google Link
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Note: Figure summarizes measures of effort by θ, where the curves are estimated via local linear regression. For both stages,
only data from the full disclosure + no automation treatment is used. Used External Sources is an indicator for whether the
participant self-reported using external sources for a particular case. Time Spent is the time spent on each case (in seconds).
Clicked Google Link is an indicator for whether the participant clicked on the Google link provided by the experimental interface
for a particular case. The 95% uniform confidence bands are computed via bootstrap accounting for clustering at the participant
and case level. The average measure of effort by θ by treatment is estimated by regressing the effort outcome on indicators for
each AI prediction shown. The 95% confidence intervals are clustered at the participant and case level.
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C Mechanisms Appendix

C.1 Additional Empirical Results

Figure C.7: Human vs Bayesian Update Rule

(a) Humans
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Note: Panel (a) plots the estimate of the function f(s, θ) that humans use to combine their own information with the AI
assessment. Panel(b) plots the function a Bayesian decision maker uses to combine the two sources of information.
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C.2 Heterogeneous Treatment Effects

Figure C.8: Accuracy and Effort by θ
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(d) Clicked Google Link
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Note: Figure summarizes measures of effort by θ, where the curves are estimated via local linear regression. The figures only
use data from Stage 2. Used External Sources is an indicator for whether the participant self-reported using external sources for
a particular case. Time Spent is the time spent on each case (in seconds). Clicked Google Link is an indicator for whether the
participant clicked on the Google link provided by the experimental interface for a particular case. The 95% uniform confidence
bands are computed via bootstrap accounting for clustering at the participant and case level.
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Figure C.9: Heterogeneity in V (θ)

(a) Split by Comprehension
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(b) Split by Performance
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(c) Split by Effort
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(d) Split by Overconfidence
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Note: V (θ) is estimated using local linear regression from Stage 1 data. V (θ) is estimated separately for high and low con-
scientiousness participants, and conscientiousness is measured in four ways: (a) number of comprehension questions answered
correctly in the training section (two or less wrong indicates high conscientiousness), (b) performance as measured by a regres-
sion of correct minus max{θ, 1− θ} on participant fixed effects, (c) effort as measured by a regression of used external sources
indicator on θ, θ2, and participant fixed effects, and (d) confidence as measured by a regression of the ground truth on a constant,
and the probability reported interacted with participant fixed effects. For figures C.9b, C.9c, and C.9d, the participants are
split using the first half of cases encountered, where half the participants are split into the each group, and V (θ) is estimated
on the second half of cases. The bandwidth is chosen via leave-one-out cross validation to minimize mean squared error. The
95% uniform confidence band displayed is computed via bootstrap accounting for clustering at the participant and case level.
The dashed lines indicate the accuracy of max{θ, 1− θ} that would result under AI automation.

67



Table C.12: Heterogeneity in Predicted Performance

SL FDA NDA
Pooled Separate Pooled Separate Pooled Separate

Comprehension
High 0.750 0.751 0.760 0.762 0.755 0.755
Low 0.715 0.716 0.742 0.743 0.739 0.742

Performance
High 0.757 0.757 0.765 0.768 0.759 0.761
Low 0.716 0.719 0.740 0.743 0.737 0.742

Effort
High 0.747 0.747 0.763 0.763 0.757 0.758
Low 0.725 0.727 0.743 0.744 0.740 0.741

Overconfident
Yes 0.731 0.733 0.751 0.751 0.746 0.747
No 0.750 0.751 0.757 0.758 0.754 0.754

Note: Table displays predicted performance under the three treatments where the pooled policy differs from the separate policy.
The pooled column denotes the performance of policies (presented in figure 8) previously estimated on the standard V (θ)
using all the Stage 1 data. The separate column denotes the performance of individually estimated policies for each group
(comprehension, performance, effort, and confidence) using the unique V (θ).

D Alternative Design Approaches

We now discuss alternative approaches that have been proposed in the literature to design

Human-AI collaboration. First, we discuss how the sufficient statistic approach differs from

the approach taken in the algorithmic triage literature (Raghu et al., 2019; Mozannar and

Sontag, 2020; Agarwal et al., 2023). Second, we discuss an approach that removes the

constraint that x represents a calibrated signal and allow the designer to exaggerate the AI

signal in an attempt to overcome the under-response to AI that we document above.

D.1 Algorithmic Triage Approach

The algorithmic triage literature focuses on algorithms that selectively automate cases and

assign the remaining cases to human decision makers without considering how the human ac-

curacy responds to the automation policy. The sufficient statistic approach has two primary

distinctions from the algorithmic triage approach. First, the sufficient statistic approach

allows for human beliefs to respond to the designer’s policy. This leads to quantitatively

different predictions of accuracy for many automation policies. For example, consider a

one-sided automation policy where the designer can only automate True classifications and
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assigns the remaining statements to humans with No Disclosure. The optimal one-sided au-

tomation policy automates cases where θ > 0.58. We can calculate the predicted performance

of this policy as γHPr (θ ≤ 0.58) + E [θ|θ ≥ 0.58]Pr (θ > 0.58), where γH is the predicted

performance of humans on cases assigned to them. The sufficient statistic approach predicts

γH = V (E [θ|θ ≤ 0.58]) = 65.3% while the algorithmic triage approach treats human per-

formance as fixed and predicts γH = E [1 [ωi = aij] |θ ≤ 0.58] = 61.2% using data in the No

Disclosure + No Automation arm. The difference in performance results from the sufficient

statistics approach allowing humans to update their beliefs about the distribution of cases

they encounter in response to the automation policy.

A second distinction between the approaches is that the sufficient statistic approach can

predict performance for any automation or disclosure policy using only data from Stage 1

(i.e. the data required to estimate V (x). The algorithmic triage approach, however, cannot

estimate performance of any policy that involves anything other than either Full Disclosure

or No Disclosure (e.g. Stoplight) and requires additional data to predict performance.

D.2 Exaggerating AI Signals to Overcome Automation Neglect

Section 6.2 found that the human participants in our study under-respond to the AI signal

relative to a Bayesian decision-maker. This finding is common in the literature on human-AI

collaboration (Dietvorst et al., 2015; Agarwal et al., 2023). A natural response to combat

such automation neglect is to exaggerate the AI signal (Vodrahalli et al., 2022). That is, the

designer can construct a disclosure policy where the AI signal provided to the human is not

calibrated. A näıve designer may overestimate the accuracy of such a policy by neglecting

to consider how participants update their beliefs when facing a non-calibrated signal. In

contrast, our sufficient statistic approach accounts for such updating.

To illustrate this problem in out setting, suppose a näıve designer assumes that the proba-

bility that a human decision maker classifies a statement as True is a stable function T (x, ω)

of the disclosed AI assessment x and the ground truth ω, whether or not the assessment

is calibrated. Under this assumption, it is optimal for the AI to mis-report any underly-

ing (calibrated) assessment θ ∈ [0, 1] as the distorted assessment δ(θ) : [0, 1] → [0, 1] that

maximizes

θT (δ(θ), 1) + (1− θ)(1− T (δ(θ), 0)), (9)

and the resulting (näıve) expected accuracy is E[θT (δ(θ), 1)+(1−θ)(1−T (δ(θ), 0)]. However,

a more plausible assumption is that participants will eventually learn to correctly infer from

any reported signal θ̃ the true conditional probability that ω = 1, δ̄(θ̃) = E[θ|δ(θ) = θ̃],
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Figure D.10: Näıve Designer Distortion Map
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Note: This figure plots the function δ(θ) defined in Equation 9 that maps the actual AI assessment to the distorted AI assessment
that a näıve designer would report.

leading to (sophisticated) expected accuracy E
[
V
(
δ̄(θ)

)]
.

It is straightforward to solve the näıve designer’s problem and compare its näıve and

sophisticated expected accuracy. We estimate the function T (θ, ω) using a logistic regression

with a quadratic term on θ and solve the optimal distortion problem of the näıve designer.

Figure D.10 plots the näıve optimal distortion policy δ(θ). Due to the AI under-response

we have documented throughout the paper, the näıve designer exaggerates the AI signal, for

example by reporting δ(θ) = 1 whenever θ ≥ 0.75 and reporting δ(θ) = 0 whenever θ ≤ 0.32.

This näıve optimal policy yields a näıve expected accuracy of 74.7%. This accuracy

is very close to that under Full Disclosure + Automation (75.1%). Intuitively, the näıve

designer believes that she can nearly replicate automation by exaggerating signals where the

AI is confident. However, the sophisticated expected accuracy of this policy is only 73.3%,

which is worse than the expected accuracy of 73.5% under Full Disclosure + No Automation.

Intuitively, once participants learn and correct the designer’s distortion function, distorting

the signal only deprives participants of information (which is sub-optimal since V is convex),

rather than correcting automation neglect.
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E Estimating Conditional Probabilities

In Section 5.2 and Section 6.2 we non-parametrically estimate a conditional probability of

the form P (ωi = 1|Wij) for a vector of covariates Wij. To do so, we estimate a penalized

logistic regression on a polynomial basis expansion of Wij with an elastic-net penalty to avoid

overfitting to our data. After the polynomial expansion, we normalize all covariates to be

mean zero with unit standard deviation. The elastic-net solves the following optimization

problem

max
β

1

N

∑
ij

(ωi log p̂ (Wij, β) + (1− ωi) log (1− p̂(Wij, β)) + λ1||β||1 + λ2||β||2 (10)

where p̂(Wij, β) =
exp(β′Wij)

1+exp(β′Wij)
, || · ||1 represents the l1 norm, || · ||2 represents the l2 norm,

and λ1, λ2 are tunable hyperparameters.

We tune the penalty parameters (λ1 and λ2) as well as the degree of the polynomial

basis expansion to minimize expected out-of-sample loss using grouped 5-fold cross-validation

(grouped at the statement level to ensure no data-leakage within a statement) following the

recommendations from Hastie et al. (2009) (chapter 7).

Lemmas 1 and 2 in Appendix A of Hirano et al. (2003) shows that the error between a

K-th order polynomial approximation of Pr(ω = 1|p, θ) and the true function converges to

zero, as K increases with the sample size at a specified rate.
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F Experimental Instructions

Below are the instructions the subjects received along with the interface-based treatment.

These screenshots come from Stage 2. The only differences in Stage 1 are that we estimate

the study will take 50 minutes (and adjust the minimum payout accordingly), each individ-

ual classifies 35 statements including the practice statements (which changes the maximum

possible payouts), and we omit the paragraph “The study will be divided into 5 blocks of 8

statements each. In each block, you will receive assistance from a different AI fact-checker.

We will inform you each time you encounter a new AI fact-checker.” from the details of the

AI tool.

F.1 Instruction Page 1
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F.2 Consent Form
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F.3 Details of Task

F.4 Details of AI Tool
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F.5 Details of Payment Rule
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F.6 Comprehension Questions
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